Betriebsanleitung

Abgasmessgerät ETT 8.55 EU

Seite

Inh	alt: S	ieite
1.	Hinweise zu Ihrer Sicherheit, zum Schutz von Geräten und Fahrzeugkomponenten	4
2. 2.1 2.2 2.3 2.4	Allgemeine Hinweise Zeichenerklärung Verwendung Benutzergruppen Betriebssoftware und Solldaten	6 6 6 6
3. 3.1 3.2 3.3 3.4 3.5 3.6	Gerätebeschreibung Funktionsbeschreibung Ansichten und Bedienungselemente Wirkungsweise Erstinbetriebnahme Anschluss an Testsystem Abgasmessungen an 2-Takt-Motoren	6 7 8 8 9
4. 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Abgasmessung Inbetriebnahme Voraussetzung für eine Abgasmessung Vorbereitung einer Abgasmessung Nachjustierung mit Prüfgas Wartungsfristen Diagnose-Messung Emissions-Test ohne Datenterminal Emissions-Test mit Datenterminal (Sonderzubehör) Kopie des Protokollausdruckes einer Abgasmessung Protokollausdrucke	10 10 11 11 11 13 16 19 19
5. 5.1 5.2 5.3	Funktionen der Parametereinstellung und Testfunktionen Einstieg in den Eingabemodus Bedienung im Eingabemodus Funktionen des Eingabemodus	21 21 21 21
6. 6.1 6.2 6.3	Sonderzubehör Protokolldrucker Drehzahlmessung Öltemperaturmessung	32 32 33 35
7.	Fehlermeldungen	36
8. 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10	Wartung Dichtigkeit des Entnahmesystemes Entnahmesonde (38) Entnahmeschlauch (35/37) Filter Überprüfung der Anzeigestabilität Überprüfung der Strömungsüberwachung Vor dem Ausschalten O2-Messwertgeber Nachjustierung mit zertifiziertem Prüfgas Standard-Parametrierung ETT 8.55	38 38 38 38 40 40 40 40 40 40 41
9.	Lieferumfang	44
10.	Ersatz-, Verschleißteile, Sonderzubehör	44
11. 11.1 11.2	Technische Daten Temperaturgrenzen Schalleistungspegel nach DIN 45635 (im Modus: Drucken)	45 45 45 45
12.	Pflege, Reinigung	45
13.	Gewährleistung	45

Hinweise zu Ihrer Sicherheit, zum Schutz von Geräten und Fahrzeugkomponenten

Im Lichtnetz wie in elektrischen Anlagen von Kraftfahrzeugen treten gefährliche Spannungen auf. Bei der Berührung von Teilen, an denen eine Spannung anliegt (z.B. Zündspule), durch Spannungsüberschläge aufgrund beschädigter Isolationen (z.B. Marderbiss an Zündleitungen), besteht die Gefahr eines Stromschlages. Dies gilt für die Sekundär- und Primärseite der Zündanlage, dem Kabelbaum mit Steckverbindungen, Lichtanlagen (Litronic) sowie den Anschlüssen von Testgeräten.

Sicherheitsmaßnahmen:

- Testgeräte nur an vorschriftsmäßig geerdeter Schutzkontaktsteckdose anschließen.
- Nur die den Testgeräten beiliegende Netzanschlussleitung verwenden.
- Nur Verlängerungsleitungen mit Schutzkontakten verwenden.
- Leitungen mit beschädigter Isolation austauschen (z.B. Netzanschluss- oder Zündleitungen).
- Testgerät zuerst ans Lichtnetz anschließen und einschalten bevor es ans Fahrzeug angeschlossen wird.
- Testgerät, vor dem Einschalten der Zündung, mit der Motormasse oder Batterie (B-) verbinden.
- Eingriffe an der elektrischen Anlage von Fahrzeugen nur bei ausgeschalteter Zündung vornehmen. Eingriffe sind z.B. der Anschluss von Testgeräten, Austausch von Teilen der Zündanlage, Ausbau von Aggregaten (z.B. Generatoren), Anschluss von Aggregaten auf einem Prüfstand usw.
- Prüf- und Einstellarbeiten wenn möglich nur bei ausgeschalteter Zündung und stehendem Motor durchführen.
- Bei Pr
 üf- und Einstellarbeiten mit eingeschalteter Z
 ündung oder laufendem Motor keine spannungsf
 ührenden Teile ber
 ühren. Dies gilt f
 ür s
 ämtliche Anschlussleitungen der Testger
 äte und die Anschl
 üsse von Aggregaten auf Pr
 üfst
 änden.
- Pr
 üfanschl
 üsse nur mit passenden Verbindungselementen vornehmen (z.B Pr
 üfkabel-Set 1 687 011 208 oder fahrzeugspezifischen Adapterleitungen)
- Prüfsteckverbindungen richtig einrasten und auf einen festen Sitz der Verbindung achten

Bei der Abgasmessung werden **Abgasentnahmeschläuche** eingesetzt, die bei Erwärmung über 250°C oder im Brandfall ein stark ätzendes Gas (Fluor-Wasserstoff) freisetzen, das die Atmungsorgane verätzen kann.

Sicherheitsmaßnahmen:

- Nach dem Einatmen sofort den Arzt aufsuchen!

Bei der Beseitigung von Verbrennungsrückständen Handschuhe aus Neopren oder PVC tragen

- Brandrückstände mit Calciumhydroxid-Lösung neutralisieren. Es entsteht ungiftiges Calciumfluorid, das weggespült werden kann.

Säuren und Laugen führen auf ungeschützter Haut zu starken Verätzungen. Fluor-Wasserstoff bildet zusammen mit Feuchtigkeit (Wasser) Flusssäure.

Kondensat, das sich im Entnahmeschlauch und dem Kondensatbehälter sammelt ist ebenfalls säurehaltig.

Beim Austausch des **O₂-Messwertgebers** ist zu beachten, dass der Messwertgeber Lauge enthält.

Sicherheitsmaßnahmen:

- Angeätzte Hautstellen sofort mit Wasser spülen, anschließend den Arzt aufsuchen!

Tritt bei Beschädigung einer **Flüssigkristall-Anzeige** Kristallflüssigkeit aus, muss der direkte Hautkontakt sowie das Einatmen oder Verschlucken dieser Flüssigkeit unbedingt vermieden werden!

Sicherheitsmaßnahmen:

- Haut und Kleidung sorgfältig mit Wasser und Seife abwaschen, wenn diese mit Kristallflüssigkeit in Berührung gekommen ist.
- Nach dem Einatmen oder Verschlucken sofort den Arzt aufsuchen.

Hinweise zu Ihrer Sicherheit, zum Schutz von Geräten und Fahrzeugkomponenten

Autoabgase enthalten Kohlenmonoxid (CO), ein farb- und geruchloses Gas. Kohlenmonoxid führt beim Einatmen zu Sauerstoffmangel im Körper. Besondere Vorsicht ist beim Arbeiten in Gruben erforderlich, da einige Abgasbestandteile schwerer als Luft sind und sich am Grubenboden absetzen.

Vorsicht auch bei Fahrzeugen mit Autogasanlagen.

Sicherheitsmaßnahmen:

- Immer für eine starke Belüftung und Absaugung sorgen (besonders in Gruben).

Bei nicht gegen wegrollen gesicherten Fahrzeugen besteht z.B. die Gefahr gegen eine Werkbank gedrückt zu werden. An laufenden aber auch an stehenden Motoren gibt es drehende und bewegte Teile (z.B. Riementriebe), die zu Verletzungen an Fingern und Armen führen können. Besonders bei elektrisch betriebenen Lüftern besteht die Gefahr, dass bei stehendem Motor und ausgeschalteter Zündung unerwartet der Lüfter einschalten kann.

Sicherheitsmaßnahmen:

- Fahrzeug während des Tests gegen wegrollen sichern.
 Automatikgetriebe in Parkstellung, anziehen der Handbremse oder blockieren der Räder durch Hemmschuhe (Keile).
- Bei laufendem Motor nicht in den Bereich drehender/bewegter Teile greifen.
- Bei Arbeiten an und in der Nähe von elektrisch betriebenen Lüftern zuerst Motor abkühlen lassen und den Stecker am Lüftermotor abziehen.
- Anschlussleitungen der Testgeräte nicht im Bereich drehender Teile verlegen.

Bei Arbeiten am heißen Motor besteht die Gefahr von Verbrennungen wenn man Komponenten wie z.B. Abgaskrümmer, Turbolader, Lambdasonde usw. berührt oder ihnen zu nahe kommt. Diese Komponenten können Temperaturen von einigen hundert Grad Celsius erreichen. Je nach Dauer der Abgasmessung kann auch die Entnahmesonde des Abgasmessgerätes sehr heiß werden.

Sicherheitsmaßnahmen:

- Schutzausrüstung verwenden z.B Handschuhe.
- Motor abkühlen lassen, gilt auch für Standheizungen.
- Anschlussleitungen der Prüfgeräte nicht auf oder in der Nähe von heißen Teilen verlegen.

Bei Messungen am Fahrzeug können besonders bei hohen Motordrehzahlen Lärmpegel auftreten, die oberhalb von 70 dB(A) liegen. Wirken Lärmpegel in dieser Höhe über einen längeren Zeitraum auf den Menschen ein, können sie zu Gehörschäden führen.

Sicherheitsmaßnahmen:

- Vom Bediener sind gegebenenfalls persönliche Schallschutzmittel zu verwenden.

2. Allgemeine Hinweise

2.1 Zeichenerklärung

In der vorliegenden Bedienungsanweisung werden folgende Piktogramme verwendet:

- ∬ Hinweis
- Achtung

LED-Anzeige des ETT

LEd Blinkende LED-Anzeige des ETT (fett dargestellt)

2.2 Verwendung

Das Abgasmessgerät ETT 8.55 EU dient zum Messen von Autoabgasen, zur Überwachung und zur Motordiagnose. Die Geräte können eingesetzt werden bei Fahrzeugen mit 4-Takt Ottomotoren sowie 4-Takt Wankelmotoren. Messungen an 2-Takt Motoren können nur mit entsprechendem Sonderzubehör durchgeführt werden (siehe Kapitel 3.6).

Darüber hinaus kann mit ETT 8.55 EU die Drehzahl und Öltemperatur des Fahrzeugs gemessen werden.

Die Geräte können als selbständige Geräte (Stand-Alone-Geräte), oder in Verbindung mit Motordiagnose-Geräten (wie z.B. MOT 150, 250, FSA 560 und KPC) betrieben werden. Hierfür sind entsprechende Schnittstellen vorgesehen.

Das Abgasmessgerät ETT 8.55 EU ist geeignet für die Durchführung von AU-Prüfungen nach EU-Richtlinie 92/55 EWG des Europäischen Rates vom 22. Juni 1992, an Fahrzeugen mit Fremdzündungsmotoren.

Das ETT 8.55 EU unterliegt der Eichpflicht für Abgasmessgeräte und muss jährlich geeicht werden.

2.3 Benutzergruppen

ETT 8.55 EU wurde für das ausgebildete Fachpersonal in der Kraftfahrzeugbranche gebaut. Zu ihrer eigenen Sicherheit und um Schaden am Gerät durch unsachgemäße Behandlung zu vermeiden, muss die Bedienungsweisung sorgfältig gelesen werden.

2.4 Betriebssoftware und Solldaten

Trotz sorgfältiger Programmierung, Zusammenstellung und Überprüfung kann für die Richtigkeit der Betriebssoftware keine Gewähr übernommen werden.

Die Haftung für Folgeschäden ist ausgeschlossen!

3. Gerätebeschreibung

3.1 Funktionsbeschreibung

Mit dem ETT werden die Abgaskomponenten CO, HC, CO_2 und O_2 gemessen. Die Luftzahl Lambda wird anhand der gemessenen Gaswerte errechnet. Darüber hinaus kann mit dem ETT die Drehzahl und die Öltemperatur des Fahrzeugs gemessen werden. Die erfassten Messwerte können über einen eingebauten oder externen Protokoll-Drucker (Sonderzubehör) ausgedruckt werden.

Folgende Messbereiche sind verwirklicht:

CO	Kohlenmonoxid	0 10.00 % vol
HC	Kohlenwasserstoffe	
	(bezogen auf Hexan)	0 9999 ppm
CO,	Kohlendioxid	0 18 % Vol
O, ^ˆ	Sauerstoff	0 21 % Vol
n	Drehzahl	0 9990 U/min
Т	Temperatur (mit Sonderzubehör	
	Öltemperaturfühler)	0 150 °C
λ	Luftzahl Lambda	0,500 2,000
CO _{vrai}		0 10 %

Für die Messung der CO, CO₂ und HC Anteile wird das nichtdispersive Infrarot-Verfahren (NDIR-Nichtdispersive Infrarot-Spektroskopie) angewendet.

Der Sauerstoff wird mit einem elektro-chemisch wirkenden Sensor (0, Messwertgeber) bestimmt.

Für die Drehzahlmessung wird eine induktive Triggerzange an der Zündleitung angeklemmt.

Für die Öltemperaturmessung wird ein Temperaturfühler anstelle des Ölmessstabes verwendet.

Der Lambda-Wert wird mit Hilfe der Brettschneider-Formel berechnet.

$$\lambda = \frac{[CO_{2}] + \frac{[CO]}{2} + [O_{2}] + \left(\frac{H_{CV}}{4}x\frac{3.5}{3.5 + \frac{[CO]}{CO_{2}}} - \frac{[Ocv]}{2}\right)x([CO_{2}] + [CO])}{\left(1 + \frac{H_{CV}}{4} - \frac{Ocv}{2}\right)x([CO_{2}] + [CO] + K_{1}x[HC])}$$

- [] Konzentration in % vol, auch für HC
- K_1 Konversationsfaktor für HC von NDIR auf FID (Wert 8)
- Hcv Wasserstoff-Kohlenstoffverhältnis im Kraftstoff (typisch 1,7261) *
- Ocv Sauerstoff-Kohlenstoffverhältnis im Kraftstoff (typisch 0,0175) *
- * Abhängig vom verwendeten Kraftstoff. Diese Werte können durch den Bosch-Kundendienst verändert werden.

3.2 Ansichten und Bedienungselemente

Bild 1, Frontansicht:

- 1. Digitale Anzeige
- 2. Protokolldrucker (Sonderzubehör)
- 3. Drehknopf zum Öffnen der Abdeckung des Druckers (Papierwechsel)
- 4. Papiervorschubtaste für Protokolldrucker
- 5. Taste für Netzspannung Ein/Aus ①
- 6. Wahltaste für die Impulszahl pro 720° Drehung (Drehzahlmessung)∏
- 8. Druckertaste Auslösen eines Ausdruckes 🖹
- 9. Pumpentaste Start/Stop einer Messung O

$\begin{array}{c c c c c c c c c c c c c c c c c c c $)

Bild 2, Digitale Anzeige:

- 10. Digitale Anzeige für HC
- 11. Digitale Anzeige für O₂
- 12. Digitale Anzeige für Drehzahl
- 13. Digitale Anzeige für CO
- 14. Digitale Anzeige für CO
- 15.1 Digitale Anzeige für Symbol Eingabefunktion und erste 2 Stellen Öltemperatur und Lambda
- 15.2 Digitale Anzeige für Zustand der Eingabefunktion und letzte 2 Stellen Öltemperatur und Lambda
- 16. Signalisierung Anzeige Öltemperatur
- 17. Signalisierung Anzeige Lambda
- Anzeige der Impulszahl pro 720° Drehung der Kurbelwelle und Nummer der Eingabefunktion
- 19. Pumpensymbol©
- 20. Druckersymbol 🗎
- 21. Zylindersymbol \□

30 31 32 33 34 ⚠ Œ IJ 13 сом **9**1 Currico H 459558/ 39 41 40 35 36 37 42 38

Bild 3, Anschlussplan der Verschlauchung:

- 30. Pumpenschutzfilter GF4
- 31. Aktivkohlefilter
- 32. Pumpenschutzfilter GF3
- 33. Eingangsfilter GF2
- 34. Messgaseingang
- 35. 8m Schlauchleitung (schwarz)
- 36. Filter GF1
- 38. Entnahmesonde
- 39. Messgas- und Kondensatausgang (70cm PVC-Schlauch klar)
- 40. Gas- und Kondensatausgang (70cm PVC-Schlauch klar)
- 41. Prüfgaseingang und Gasausgang (70cm PVC-Schlauch klar)
- 42. Prüfbuchse

Bild 4, Rückseite:

- 50. Anschlussbuchse für Öltemperaturfühler
- 51. Anschlussbuchse für induktive Triggerzange
- 52. Anschlussbuchse für Anschlussleitung Kl. 1, TD/TN, Bbzw. Fahrzeugmasse
- 53. Abdeckkappe für O_2 -Messwertgeber
- 54. Netzanschluss mit Netzsicherung
- 55. 2. serielle Schnittstelle (Sonderzubehör)
- 56. Serielle Schnittstelle

3.3 Wirkungsweise

3.3.1 Anwärmzeit

Die Anwärmzeit des Gerätes beträgt 3 min. Während dieser Zeit ist keine Messung möglich.

Im Eingabemodus (siehe Kapitel 5) wird die Anwärmzeit nicht abgewartet. Bei Messungen in diesem Modus ist daher die Nullpunktdrift zu beachten.

3.3.2 Drift Korrektur

15 Minuten nachdem eine Messung gestartet wurde, führt das Messgerät selbstständig einen Systemcheck mit Umgebungsluft durch. Wenn gerade eine Messung durchgeführt wird, verschiebt sich der Systemcheck bis zum Ende der Messung.

3.3.3 Systemcheck ERL

Zum Systemcheck schaltet das Messgerät ein Magnetventil auf Umgebungsluft um. Für 30 Sekunden wird mit Nullgas gespült.

Die angesaugte Umgebungsluft wird durch ein Aktivkohlefilter von Kohlenwasserstoffen gereinigt.

Die Drift der Sauerstoffmessung und die Nullpunkte der HC, CO und CO₂-Messung werden überwacht und nachjustiert.

3.3.4 Luftzahlmessung

Aus den gemessenen Konzentrationen von HC, CO, CO₂ und Sauerstoff berechnet das Messgerät die Luftzahl Lambda. Eine genaue Sauerstoffmessung ist für die Lambdaberechnung wichtig. Wenn diese aktiv ist, wird die Anzeige für die Öltemperatur auf Lambda umgeschaltet, sobald eine CO₂-Konzentration größer als 2 % gemessen wird.

3.3.5 Korrigierte CO-Konzentration (CO_{vral})

Aus der Konzentration von CO und CO₂ berechnet das Messgerät bei Bedarf die wahre CO-Konzentration (CO_{vra}).

ETT 8.55:

Undichtigkeiten des Auspuffsystemes werden dabei berücksichtigt. Die korrigierte CO-Konzentration wird nur auf dem Messprotokoll ausgedruckt und, falls keine Drehzahl gemessen wird, in der digitalen Anzeige (12) angezeigt.

3.3.6 Sauerstoffmessung

Das Abgasmessgerät ist mit einem O₂-Messwertgeber ausgerüstet. Der Geber wird an der Rückwand des Gerätes an der dafür vorgesehenen Stelle (53) eingeschraubt.

Die Sauerstoffmessung wird automatisch mit dem Luftsauerstoff von 20,9 % Vol. abgeglichen. Sie ist abschaltbar (siehe Kapitel 5.3.6).

Der O₂-Messwertgeber ist ein Verschleißteil.

3.4 Erstinbetriebnahme

- Aufstellhöhe 250 mm min. Länge der Auslaufschläuche 300 mm min.
- Nur so ist der kontinuierliche Kondensatabfluss gewährleistet, wird die Messgenauigkeit eingehalten und ist das Messsystem ausreichend vor Verschmutzung geschützt.

Anschlussplan siehe Bild 3.

- Abgasentnahmesonde über 30 cm Viton Schlauch (37) mit Vorfilter (36) verbinden.
- Entnahmeschlauch (35) an Vorfilter anschließen.
- Entnahmeschlauch an Gaseingang (34) des Messgerätes anschließen.
- 3 PVC-Schläuche, 70 cm lang (39/40/41) an Gasausgänge anschließen. Die Schläuche in ein offenes Gefäß für Kondensatwasser leiten.
- Spannungsangaben auf dem Typenschild beachten! Die Umstellung auf eine andere Netzspannung muss durch den Bosch-Kundendienst erfolgen.
- Das Abgasmessgerät an einer vorschriftsmäßig geerdeten Schutzkontaktsteckdose mit der beiliegenden Netzanschlussleitung anschließen.

3.5 Anschluss an Testsystem

Die Messwerte des Abgasmessgerätes können automatisch an das Testsystem übertragen werden. Dazu muss das Abgasmessgerät über die serielle Schnittstelle (56) mit dem Testsystem verbunden werden. Die Parametrierung erfolgt über "Eingabemodus" (siehe Kapitel 5.3.13 und 5.3.14).

3.6 Abgasmessungen an 2-Takt-Motoren

3.6.1 Technik

Fahrzeuge mit Zweitaktmotoren haben gegenüber Fahrzeugen mit Viertaktmotoren höhere HC-Emissionen und scheiden zusätzlich Öl ab. Öl besteht im wesentlichen aus Kohlenwasserstoffen (HC). Dieses setzt sich, wenn keine Vorkehrungen dagegen getroffen werden, an den Wandungen des äußeren Gasweges (Sonde, Schlauch, Filter) ab.

Die Ablagerungen haben eine HC-Konzentrationsanzeige (Restwertanzeige) zur Folge, auch wenn keine Abgasmessung durchgeführt wird, d.h. bei einer HC-Messung wird der tatsächliche Wert um diesen Restwert verfälscht (vergrößert).

Dieser Effekt, in Fachkreisen als "Hang-up" bezeichnet, tritt bei allen Abgasmessgeräten auf und ist nicht fabrikatsbezogen. Nur bei Geräten mit HC-Messung wird er sichtbar.

Die Ablagerungen können durch den Einsatz von Aktivkohlefiltern weitgehendst verhindert werden. Diese Filter binden und neutralisieren zum größten Teil Öl und flüchtige Kohlenwasserstoffe. Derartige Filter haben eine begrenzte Lebensdauer. Sie sind an der Sonde nach dem Grobfilter in den Gasweg einzusetzen.

Nach dem Aktivkohlefilter können Ablagerungen in kleinen Mengen an der Schlauchwandung auftreten. Sie müssen entfernt werden. Hierfür werden wir zwei Alternativen anbieten:

- 3.6.2 Lösungen
- Alternative 1

Freispülen mit der im Messgerät eingebauten Pumpe.

Nach jeder Zweitakt-Messung muss die Pumpe solange eingeschaltet bleiben, bis der angezeigte HC-Wert unter 20 ppm abgesunken ist. Die Spülzeit ist abhängig von der Höhe des Restwertes. Sie kann ca. 30 Minuten betragen, kann aber auch wesentlich länger sein.

Für diese Alternative wird für die Zweitakt-Abgasmessung zusätzlich nur der Aktivkohlefilter benötigt. Er muss für diese Messungen immer in den Gasweg eingesetzt werden.

- 2. Aktivkohlefiter 1 687 432 014
- 3. Entnahmeschlauch, Material Viton

Alternative 2

Um die Spülzeiten drastisch zu verringern, d.h. die Verfügbarkeit der Geräte nach der Zweitaktmessung zu erhöhen, empfehlen wir einen zweiten äußeren Gasweg.

Die möglichen Ablagerungen werden durch Ausblasen des Schlauches mit Druckluft rasch entfernt.

- 1. Grobfilter 1 687 432 005
- 2. Aktivkohlefiter 1 687 432 014
- 3. Entnahmeschlauch, Material Viton
- 4. Entnahmeschlauchset 1 687 001 283 Material Silicon, Länge (7,5 + 0,3 + 0,3)m

3.6.3 Hinweise

- Der Entnahmeschlauch f
 ür den 2. Gasweg besteht aus dem Material Silicon.
 Er ist gegen
 über dem Schlauch aus Viton kosteng
 ünstiger, aber absorbiert Kohlenwasserstoffe
- Aktivkohlefilter binden Kohlenwasserstoffe.
- Silicon-Entnahmeschlauch und Aktivkohlefilter dürfen nur für CO-Messungen, nicht aber für HC- und Lambda-Messungen eingesetzt werden.

4. Abgasmessung

4.1 Inbetriebnahme

Vor der 1. Inbetriebnahme sind die Anweisungen nach Kapitel 3.4 durchzuführen.

4.1.1 Vor der Abgasmessung sind zu prüfen:

- Entnahmesonde (Beschädigung, Verstopfung)
- Filter (Vorhandensein, Beschädigung)
- Entnahmeschlauch (Beschädigung, Verstopfung)
- Filter GF2, GF3, GF4

4.1.2 Gerät einschalten

Je nach Parametrierung des Gerätes (siehe Kapitel 5.) kann das Anwärmen etwas anders ablaufen.

– Netztaste ① (5) drücken.

Segmenttest wird durchgeführt. Dauer 10 s.

8.8.8.8	8.8.8.8	Ø
8.8.8.8	8.8.8.8	E
8.8.8.8	8.8.8.8	18 🗔

Geräteversion und aktuelles Datum wird für 5s angezeigt, z.B:

IJ	1	3	L	IJ	5.	Ч	8
2	δ.	0	Б	1	9	9	8
Ε	٤	٤			8.	5	5

Anlauf mit Anzeige der restlichen Anwärmzeit. Möglichkeit eine Dichtigkeitsprüfung durchzuführen. Pumpensymbol © (19) blinkt. Dauer 3 min.

U I	3 L	3.0 0	0
8 n	1	8 n l	
LE	Ľ	とそらと	

Systemcheck ERL. Dauer 30s.

Ε	8	L.	Ε	8	L.
Ľ	8	L.	Ε	8	L.

Stand-By-Modus

- - - - - - - - - - - / ****

4.1.3 Dichtigkeitsprüfung

Alle 24 Stunden muss eine Dichtigkeitsprüfung durchgeführt werden. Das Abgasmessgerät fordert automatisch dazu auf.

Während der Anwärmzeit kann eine Dichtigkeitsprüfung des Entnahmesystems durchgeführt werden.

Verbrennungsgefahr!

Je nach Dauer der Abgasmessung kann die Entnahmesonde des Abgasmessgerätes sehr heiß sein.

Die Prüfung mit

- Drücken der Pumpentaste ♀ (9) aktivieren.

Das Pumpensymbol © (19) blinkt.

Entnahmesonde (38) mit der Prüfbuchse (42) abdichten.

Danach wird der Lecktest mit

- Drücken der Pumpentaste O (9) gestartet.

| IJ | 1 | З | L | | | 2 | Ч | | | |
|----|---|---|---|---|---|---|---|--|--|--|
| L | Ε | Ľ | | ٤ | Ε | 5 | ٤ | | | |
| | | | | | | | | | | |

Die Leckzeit wird im Anzeigefeld (13) angezeigt.

Bei erfolgreichem Lecktest erfolgt der Rücksprung in den Anlaufmodus, andererseits erfolgt eine Fehlermeldung.

4.2 Voraussetzung für eine Abgasmessung

- Der Motor muss warm sein (Öltemperatur > 60°C)
- Starthilfen (automatisch und manuell) dürfen nicht wirksam sein.
- Die Auspuffleitung muss dicht sein.
- Der Motor muss die vom Hersteller vorgeschriebene Zündeinstellung haben. (Schließwinkel, Zündzeitpunkt und Leerlaufdrehzahl)

4.3 Vorbereitung einer Abgasmessung

Autoabgase sind giftig!

In geschlossenen Räumen muss das Autoabgas mit einer Absauganlage abgesaugt werden.

Bei Auspuffanlagen mit einem Auspufftopf, jedoch mit 2 Auspuffendrohren, sind beide Rohre in ein Sammelrohr zu führen.

Bei Anschluss der Triggerzange kann es bei fehlerhaften Zündanlagen durch Spannungsüberschläge zu Personen- und Sachschäden kommen. Das Abgasmessgerät darf deshalb nur nach vorherigem Anschluss einer Masseleitung betrieben werden.

- Die Entnahmesonde (38) darf bei der Abgasmessung erst nach der Konditionierung bzw. bei der Diagnose-Messung erst während der laufenden Messung in den Auspuff eingeführt werden (siehe Kapitel 4.6 und 4.7).
- Motor aus, Zündung aus.
- Bei Abgasmessungen vor dem Katalysator ist zwischen Messgerät und Entnahmestelle am Auto die gesamte Länge des Entnahmeschlauches (8 m) zu verwenden.
 Temperaturgrenze für Vitonschlauch beachten (max. 200 °C).

Das Filter (36) muss ebenfalls verwendet werden.

 Die Messung durch Drücken der Pumpentaste © (9) starten.

Mit dem Sonderzubehör "Öltemperaturfühler" und "Induktive Triggerzange" ist zu beachten:

- Masseanschluss zwischen Abgasmessgerät und Fahrzeug herstellen.
- Induktive Triggerzange so an ein Zündkabel im Motorraum anklemmen, dass sich eine möglichst weite Entfernung zu anderen Zündkabel ergibt.
- Mit der Taste >= (7) Anwahl des Sensors und der Messstelle (siehe Kapitel 6.2.3).
- Den Öltemperaturfühler mit dem Dichtkegel in der Länge dem Ölmessstab angleichen.
- Öltemperaturfühler anstelle des Ölmessstabes in das Motorgehäuse einführen.
- Motor starten.

4.4 Nachjustierung mit Prüfgas

Das Messgerät zeichnet sich durch eine besonders gute Langzeitstabilität aus. Gesetzliche Regelungen fordern, dass es in regelmäßigen Zeitabständen nachjustiert werden muss. Vor Ablauf der Justierfrist wird eine Warnung angezeigt.

Es muss bis zum Ablauf der Justierfrist mit Prüfgas nach Kapitel 8.10 nachjustiert werden.

4.5 Wartungsfristen

Regelmäßige Wartungsarbeiten sind notwendig, um die Betriebssicherheit und die Messgenauigkeit zu erhalten. Wenn die Wartungsfrist überschritten ist erscheint im Stand-By-Modus folgende Anzeige als Hinweis auf die fällige Wartung.

| 5 | Ε | r | | 5 | Ε | r | | |
|---|---|---|--|---|---|---|--|--|
| 5 | Ε | ۲ | | 5 | Ε | ۲ | | |
| | | | | | | | | |

Die Wartung muss im Eingabemodus (siehe Kapitel 5.3.5) quittiert werden. Wartung siehe Kapitel 8.

4.6 Diagnose-Messung

4.6.1 Diagnose-Messung ohne Datenterminal

Die Diagnose-Messung wird vom Standby-Modus aus gestartet.

| - | - | - | - | - | - | - | - | |
|---|---|---|---|---|---|---|---|--|
| - | - | - | - | - | - | - | - | |
| - | - | - | - | - | - | - | - | |

- Diagnose-Messung mit Pumpentaste ∅ (9) starten.

Mit der Taste ☺ (9) kann die Messung zu jeder Zeit abgebrochen werden.

Es wird die eingestellte Treibstoffart angezeigt.

Das Zylindersymbol 🗔 (21) blinkt.

Durch Drücken der Taste \Box (6) kann zwischen diesen Treibstoffarten umgeschaltet werden:

- PEtr Benzin
- 65 Liquid Petrol Gas
- Compressed Natural Gas
- COH Methanol

Je nach Zustand des Abgasmessgerätes wird unter Umständen ein automatischer Systemcheck *ERL* durchgeführt. Dauer 30 s

Automatisch wird ein HC-Rückstandstest durchgeführt. Dauer 6 s.

Danach erfolgt die Anzeige der aktuellen Messwerte der Umgebungsluft.

 Die Entnahmesonde (38) so weit wie möglich in das Auspuffendrohr oder in das aufgesteckte Sammelrohr einschieben und mit der Klemmvorrichtung an das Auspuffendrohr befestigen.

Anzeige der aktuellen Messwerte des Abgases.

Mit dem Sonderzubehör

- Induktive Triggerzange (O / min)
- Öltemperaturfühler (°C)

werden die entsprechenden Messgrößen ebenfalls angezeigt.

| 303 | 1.5 9 3 | Ø |
|-------|------------|---|
| 0.72 | 12.08 | |
| 8 Y D | <i>6 3</i> | 1 |

Anwahl des Drehzahl-Sensors und der Messstelle durch Drücken mit Taste ≥ (7) (siehe Kapitel 6.2.3).
 Die Impulszahl wird mit der Taste (6) eingestellt (siehe Kapitel 6.2.4).

Protokollausdruck mit

- Taste 🖹 (8)
- Wird während einer laufenden Messung die Taste (8) erneut betätigt, werden nach jeder Betätigung die aktuellen Messwerte ohne Protokollkopf ausgedruckt.
- Beenden der Messung und Freispülen durch Drücken der Pumpentaste © (9)

| S P. | 5 P. | |
|------|------|----|
| S P. | 5 P. | |
| | | 15 |

4.6.2 Diagnose-Messung mit Datenterminal (Sonderzubehör)

Die Diagnose-Messung wird vom Grundmenü aus gestartet.

| Mode of operation | |
|--------------------|------------------------|
| F1 = Emission test | (two speed) |
| F4 = Leak test | F6 = Pulses/720 °RC |
| F5 = Diagnosis | F9 = Parameter setting |

- Diagnose-Messung mit **F5** starten.
- Mit der Taste **F10** kann die Messung zu jeder Zeit abgebrochen werden.

Es wird die eingestellte Treibstoffart angezeigt.

Type of fuel: (P/L/C/M)<u>P</u> Petrol, LPG, CNG, Methanol Enter = Continue

- Eingabe: Anfangsbuchstabe P, L, C, M
 Standard ist P (Petrol)
- LPG Liquid Petrol Gas
- CNG Compressed Natural Gas
- Einstellung mit Taste ENTER bestätigen

Je nach Zustand des Abgasmessgerätes wird unter Umständen ein automatischer Systemcheck *LRL* durchgeführt. Dauer 30 s.

| Diagnosis measurement | |
|-----------------------|--------------|
| System check | F10 = Finish |

Automatisch wird ein HC-Rückstandstest durchgeführt. Dauer 6 s.

| ppm vol HC max | 20 | real 210* | |
|-----------------|----|--------------|--|
| HC residue test | | F10 = Finish | |

Danach erfolgt die Anzeige der aktuellen Messwerte der Umgebungsluft.

 Die Entnahmesonde (38) so weit wie möglich in das Auspuffendrohr oder in das aufgesteckte Sammelrohr einschieben und mit der Klemmvorrichtung an das Auspuffendrohr befestigen.

Anzeige der aktuellen Messwerte des Abgases.

| ppm vol HC 210 | %vol CO | 0.235 |
|-------------------|----------------|--------|
| % vol 02 1.95 | %vol CO2 | 12.5 |
| n[/min] 0 | °C λ | 1.002 |
| F6= Pulses/720°RC | F3= Print F10= | Finish |

Mit dem Sonderzubehör

- Induktive Triggerzange (O / min)
- Öltemperaturfühler (°C)

werden die entsprechenden Messgrößen ebenfalls angezeigt.

| ppm vol HC | 210 | | | %vol | CO | 0.235 |
|-------------|---------|-----|----|-------|------|--------|
| % vol 02 | 1.95 | | | %vol | C02 | 12.5 |
| n[/min] | 2500 | 100 | °C | | λ | 1.002 |
| F6= Pulses, | /720°RC | F3= | Pr | int 1 | F10= | Finish |

- Anwahl des Drehzahl-Sensors, der Messstelle und der Impulszahl mit **F6** (siehe Kapitel 4.8.1).
- Protokollausdruck mit F3
- Wird während einer laufenden Messung **F3** erneut betätigt, werden nach jeder Betätigung die aktuellen Messwerte ohne Protokollkopf ausgedruckt.
- Beenden der Messung und Freispülen mit F10

4.7 Emissions-Test ohne Datenterminal

Der Emissions-Test wird vom Standby-Modus aus gestartet.

| - | - | - | - | - | - | - | - | | |
|---|---|---|---|---|---|---|---|---|--|
| - | - | - | - | - | - | - | - | | |
| - | - | - | - | - | - | - | - | 1 | |

Messung mit Taste 🖻 (8) starten

Mit der Taste O (9) kann der Emissions-Test zu jeder Zeit abgebrochen werden.

Es wird die eingestellte Treibstoffart angezeigt.

Das Zylindersymbol 🗔 (21) blinkt.

Durch Drücken der Taste ☐ (6) kann zwischen diesen Treibstoffarten umgeschaltet werden:

| PEEr | Benzin |
|------|-------------------|
| LP6 | Liquid Petrol Gas |

- En6 Compressed Natural Gas
- COH Methanol

Durch Drücken der Taste 🖹 (8) oder automatisch nach 6 s wird ein automatischer Systemcheck *LRL* durchgeführt. Dauer 30 s

Automatisch wird ein HC-Rückstandstest durchgeführt. Dauer 6 s.

Die Konditionierungsphase wird automatisch eingeleitet

 Anwahl des Drehzahl-Sensors und der Messstelle durch Drücken mit Taste ≥ (7) (siehe Kapitel 6.2.3).
 Die Impulszahl wird mit der Taste (6) eingestellt (siehe Kapitel 6.2.4).

Abwarten bis das Druckersymbol 🔁 (20) blinkt.

Wenn die Öltemperatur nach Fahrzeughersteller-Angaben erreichtist:

- die Entnahmesonde (38) so weit wie möglich in das Auspuffendrohr oder in das aufgesteckte Sammelrohr einschieben und mit der Klemmvorrichtung an das Auspuff-endrohr befestigen.
- mit der Druckertaste
 (8) die Konditionierung beenden und Messung beginnen.

Je nach Parametrierung (siehe Kapitel 5.3.15 **Parametrierung der Ablaufmessung**) kann die Messung in 2 verschiedenen Abläufen erfolgen:

- Messung bei erhöhter Leerlaufdrehzahl an 2. Stelle Standard-Parametrierung. Manuelles Weiterschalten von Messung bei Leerlaufdrehzahl zu Messung bei erhöhter Leerlaufdrehzahl.
- Messung bei erhöhter Leerlaufdrehzahl an 1. Stelle Automatisches Weiterschalten von Messung bei erhöhter Leerlaufdrehzahl zu Messung bei Leerlaufdrehzahl.
- 4.7.1 Messung bei erhöhter Leerlaufdrehzahl an 2. Stelle (G-Kat, U-Kat, ohne Kat)
- Messung bei Leerlaufdrehzahl

Die Ist-Drehzahl (12) und die maximal zulässige Leerlaufdrehzahl (15) werden angezeigt.

Liegt die Ist-Drehzahl über dem maximal zulässigen Wert, blinkt die Drehzahlanzeige (12) und es erfolgt kein automatisches Weiterschalten zur Gaslaufzeit.

Bei korrekter Ist-Drehzahl oder, wenn die Drehzahlbrücke aktiviert ist (siehe 5.3.15 Parametrierung der Ablaufmessung, Unterpunkt *EU .ED* Parameter *drbr*.), nach Drücken der Taste 🖹 (8) beginnt die Gaslaufzeit von 30 s.

| 2 0 | 0.5 | 3 | 1 | 0 |
|-------|-----|---|---|-----|
| 0.5 3 | 1.5 | 1 | 0 | |
| 6 Y O | Ι.Ο | 0 | 2 | 1 🗔 |

Nach der Gaslaufzeit blinkt das Druckersymbol 🖹 (20).

Die Messwerte der Messung bei Leerlaufdrehzahl werden abgespeichert und automatisch die Messung bei erhöhter Leerlaufdrehzahl eingeleitet. Wenn keine Messung bei erhöhter Leerlaufdrehzahl durchgeführt werden soll (z.B. bei Fahrzeugen ohne Kat), muss die Taste

 (8) innerhalb von 3 s nochmals gedrückt werden. Es erfolgt ein Ausdruck mit dem Protollkopf, den Ergebnissen der ersten Messung und dem Protokollfuß entsprechend der Parametrierung. Es erfolgt ein Freispülen des Abgasmessgerätes.

Messung bei erhöhter Leerlaufdrehzahl

Die Ist-Drehzahl (12) und die Soll-Drehzahl (15) werden angezeigt.

- Das Drehzahlfenster kann durch Drücken der Taste (6) um jeweils 100 min⁻¹ erhöht werden (Einstellbereich 1500 -3300 min⁻¹ + 400 min⁻¹). Wenn der höchste einstellbare Wert erreicht ist, wird zum niedrigsten Wert gesprungen.
- Wenn die Ist-Drehzahl nicht mit dem Drehzahlfenster übereinstimmt, blinkt die Drehzahlanzeige (12) und es erfolgt kein automatisches Weiterschalten zur Gaslaufzeit.

Bei korrekter Ist-Drehzahl oder, wenn die Drehzahlbrücke aktiviert ist (siehe 5.3.15 Parametrierung der Ablaufmessung, Unterpunkt *EU .ED* Parameter *drbr*.), nach Drücken der Taste 🗎 (8) beginnt die Gaslaufzeit von 30 s.

Nach der Gaslaufzeit werden automatisch die Messwerte der zweiten Messung gespeichert, das Protokoll ausgedruckt und die Messung beendet.

Es erfolgt ein Freispülen des Abgasmessgerätes.

- **4.7.2** Messung bei erhöhter Leerlaufdrehzahl an 1. Stelle (nur G-Kat)
- Messung bei erhöhter Leerlaufdrehzahl

Die Ist-Drehzahl (12) und das Drehzahlfenster (min. und max. der Solldrehzahl) (11 + 14) werden angezeigt.

- Das Drehzahlfenster kann durch Drücken der Taste (€)
 um jeweils 100 min⁻¹ erhöht werden (Einstellbereich 1500 3300 min⁻¹ + 400 min⁻¹). Wenn der höchste einstellbare Wert erreicht ist, wird zum niedrigsten Wert gesprungen.
- Wenn die Ist-Drehzahl nicht mit dem Drehzahlfenster übereinstimmt, blinkt die Drehzahlanzeige (12) und es erfolgt kein automatisches Weiterschalten zur Gaslaufzeit.

Bei korrekter Ist-Drehzahl beginnt die Gaslaufzeit von 30 s.

| 2 0 | 0.5 3 I | \bigcirc |
|------|---------|------------|
| 0.53 | 1.5 1 0 | E |
| 2420 | 1.0 0 3 | 1 🗔 |

Nach der Gaslaufzeit der Messung bei erhöhter Leerlaufdrehzahl wird **automatisch** zur Messung bei Leerlaufdrehzahl weitergeschaltet.

Messung bei Leerlaufdrehzahl

Die Ist-Drehzahl (12) und die maximal zulässige Leerlaufdrehzahl (15) werden angezeigt.

Liegt die Ist-Drehzahl über dem maximal zulässigen Wert, blinkt die Drehzahlanzeige (12) und es erfolgt kein automatisches Weiterschalten zur Gaslaufzeit.

Bei korrekter Ist-Drehzahl oder, wenn die Drehzahlbrücke aktiviert ist (siehe 5.3.15 Parametrierung der Ablaufmessung, Unterpunkt *EU .EG* Parameter *drbr*.), nach Drücken der Taste 🖹 (8) beginnt die Gaslaufzeit von 30 s.

| 2 0 | 0.5 3 I | \bigcirc |
|--------------|------------|------------|
| 0.5 <i>3</i> | 1.5 I O | |
| 1440 | <i>8</i> S | 1 🗔 |

Nach der Gaslaufzeit blinkt das Druckersymbol 🔁 (20).

– Taste 🖻 (8) drücken

Die Messwerte der Messung werden abgespeichert, das Protokoll ausgedruckt und die Messung beendet.

Es erfolgt ein Freispülen des Abgasmessgerätes.

4.8 Emissions-Test mit Datenterminal (Sonderzubehör)

Folgendes Grundmenü wird auf dem Datenterminal angezeigt:

| Mode of operation | |
|--------------------|------------------------|
| F1 = Emission test | (two speed) |
| F4 = Leak test | F6 = Pulses/720°RC |
| F5 = Diagnosis | F9 = Parameter setting |

4.8.1 Funktionstasten am Datenterminal

F1 Emissions test

Amtliche Prüfung für Fahrzeuge mit Fremdzündungsmotoren mit geregelter Gemischaufbereitung, sonstigen Abgasreinigungssystemen und ohne Abgasreinigungssystem.

F3 Drucken

Bewirkt einen Ausdruck auf den angeschlossenen/eingebauten Drucker.

- In der Diagnosemessung und den AU-Pr
 üfabläufen werden die aktuellen Messwerte ausgedruckt.

F4 Lecktest

Verbrennungsgefahr!

Die Entnahmesonde des Abgasmessgerätes kann nach vorheriger Abgasmessung noch sehr heiß sein.

| Leak test | |
|------------------------------|--------------|
| Sampling sensor sealing with | |
| checking bush | |
| Sampling sensor sealed? | (<u>¥</u>) |

- Das Gerät mißt nun den Druckabfall über eine Zeitdauer von 50 s. Die Zeit wird von 50 s rückwärts bis auf Null gezählt.
- Es erscheint die Meldung "Leak test OK" und die Aufforderung "Remove checking bush"
- Wurde eine Leckstelle im System erkannt, so kommt die entsprechende Fehlermeldung.

F5 Diagnose Messung

Nach einem Abgleich erscheint das folgende Bild:

Type of fuel: $(P/L/C/M) \underline{P}$

```
Petrol, LPG, CNG, Methanol
```

Enter = Continue

F6 Drehzahl-Messstellen- und Impulszahl-Eingabe

Für die universelle Drehzahlmessung an unterschiedlichen Zündsystemen (Einzel- / Doppelfunken, RUV), besteht die Möglichkeit der Auswahl von Drehzahl-Messstelle und Drehzahl-Sensor (Triggerzange sekundär, primär / Anschlussleitung KI. 1 / B-), sowie die Einstellung der Zündimpulse, die pro 2 Kurbelwellenumdrehungen erfasst werden.

Die Einstellung kann im Stand-By, in der Diagnosemessung und beim ersten AU-Prüfschritt, in dem eine Drehzahlmessung stattfindet, geändert werden.

• Eingabe der Drehzahl-Messstelle

```
RPM sensors measuring point EFS
n[/min] 0 at pulses/720°RC = 1
RPM sensors measuring point OK? (Y/N)Y
```

- Mit Eingabe Y (yes) weiter zur Eingabe der Impulszahl
 Nach Eingabe N (no) kann die Drebzahl-Messstelle verä
- Nach Eingabe N (no) kann die Drehzahl-Messstelle verändert werden

Selecting the rpm sensors measuring point n[/min] 0 at pulses/720°RC = 1 EFS, DFS, I-Prim, Prim.-L (E/D/I/P)? <u>E</u>

- Eingabe: Anfangsbuchstabe E, D, I oder P
- Standard ist **E** (EFS)
- Weiter mit Taste ENTER

RPM sensors measuring point EFS n[/min] 2500 at pulses/720°RC = 1

- RPM sensors measuring point OK? $(Y/N) \underline{Y}$
- Mit Eingabe Y (yes) weiter zur Eingabe der Impulszahl
 Nach Eingabe N (no) zurück zur Änderung der Drehzahl-Messstelle

Eingabe der Impulszahl

| Number of | pulses/7 | 20° rev. | of crankshaft |
|-----------|----------|----------|-----------------|
| n[/min] | 2500 | at pul | .ses/720°RC = 1 |
| Measuring | piont | | EFS |
| Number of | pulses | OK? | (Y/N) <u>Y</u> |

- Mit Eingabe Y (yes) wird die Eingabe von Drehzahl-Messstelle und Impulszahl beendet
- Nach Eingabe N (no) kann die Impulszahl geändert werden

Setting the pulse rate/720°rev. of crank n[/min] 2500 at pulses/720°RC = $\underline{1}$

- Eingabe: eine Zahl 1...6, 8, 10, 12
- Standard ist 1
- Weiter mit Taste ENTER

| Number of pulses/7 | 20° rev. of crankshaft |
|--------------------|------------------------|
| n[/min] 2500 | at pulses/720°RC = 4 |
| Measuring piont | EFS |
| Number of pulses | OK? (Y/N) Y |

- Mit Eingabe Y (yes) wird die Eingabe von Drehzahl-Messstelle und Impulszahl beendet
- Nach Eingabe N (no) zurück zur Änderung der Impulszahl

F8 Eingabe der frei definierbaren Protokoll-Texte

- Dieser Menüpunkt ist nur anwählbar, wenn bei der Parametrierung der Ablaufmessung im Unterpunkt EU E3 Sprache/ Länderauswahl die Einstellung 12 RLL6 EU-open eingestellt ist! Siehe Kapitel 5.3.15, Unterpunkt EU E3 Sprache/ Länderauswahl.
- Im Grundmenü des Datenterminals wird der Menüpunkt F8 nicht angezeigt!
- Mit der Funktionstaste F8 das Menü zur Eingabe der frei definierbaren Protokolltexte anwählen.

Das Menü zur Eingabe der frei definierbaren Protokoll-Texte wird angezeigt.

```
Input of free text
F1 = Results of measurement
F2 = Results without Cat F3 = Copy
F4 = Test interrupted F10= Finish
```

Durch Drücken der Funktionstasten **F1** bis **F4** wird der jeweils aktuelle Text mit dem Hinweis auf die maximale Textlänge angezeigt. Der aktuell angezeigte Text kann jetzt überschrieben bzw. geändert werden.

Text über die Tastatur des Datenterminals ändern

Eingabe mit F10 Finish beenden

Die eingegebenen Texte erscheinen danach auf dem Protokollausdruck bzw. auf der Kopie des Protokollausdrucks an den entsprechenden Stellen (siehe Kapitel 4.9 und 4.10).

F9 Eingabe Werkstattadresse, Geräte-Identifikation, Datum

Auf dem Display des Datenterminals erscheint die Eingabemöglichkeit für den Protokollkopf (Werkstatt-Adresse), Kennzeichen, Unterschrift, Datum und Uhrzeit und Schlusstext. Zusätzlich werden die Versions-Nummer und der nächste Wartungstermin angezeigt.

| P = Protocol head | VERS: |
|-------------------|-----------------------|
| N = Number plate | Maintenance: 15.01.97 |
| S = Signature | A = Advertising |
| D = Date/time | F10 = Finish |
| | |

F10 Beenden

Mit dieser Taste ist es immer möglich einen Messvorgang abzubrechen, um ins Grundmenü zurückzugehen.

Automatischer Abbruch (Timeout)

Erfolgt auf die Vorgabe der Bedienerführung innerhalb von 10 min keine Eingabe oder Reaktion, bricht das Messgerät automatisch die Untersuchung ab (Forderung des Gesetzgebers).

Meldung: "Emission test was interrupted"

- **4.8.2** Messung bei erhöhter Leerlaufdrehzahl an 2. Stelle (G-Kat, U-Kat, ohne Kat)
- Die Messung bei erhöhter Leerlaufdrehzahl erfolgt nur bei Fahrzeugen mit geregeltem Katalysator (Parametrierung der Ablaufmessung siehe Kapitel 5.3.15).

Der Emissions-Test wird vom Grundmenü aus gestartet.

```
Mode of operation
F1 = Emission test (two speed)
F4 = Leak test F6 = Pulses/720°RC
F5 = Diagnosis F9 = Parameter setting
```

- Emissions-Test mit **F1** starten.
- Mit der Taste **F10** kann der Emissions-Test zu jeder Zeit abgebrochen werden.

Es wird die eingestellte Treibstoffart angezeigt.

Type of fuel: (P/L/C/M)P Petrol, LPG, CNG, Methanol Enter = Continue

- Eingabe: Anfangsbuchstabe P, L, C, M
 Standard ist P (Petrol)
- LPG Liquid Petrol Gas CNG Compressed Natural Gas
- Einstellung mit Taste ENTER bestätigen

Automatisch wird ein Systemcheck ERL durchgeführt. Dauer 30 s.

Emission test System check F10 = Finish Automatisch wird ein HC-Rückstandstest durchgeführt. Dauer 6 s.

| ppm vol HC | max | 20 | real 210* |
|------------|------|----|--------------|
| HC residue | test | | F10 = Finish |

Die Konditionierungsphase wird eingeleitet.

Type of fuel: Petrol Oil temperature [°C]: 82 Real engine running speed n[min]: 800 F6= Pulses/720°RC ENTER = Continue

- Anwahl des Drehzahl-Sensors, der Messstelle und der Impulszahl mit **F6** (siehe Kapitel 4.8.1).
- Die Entnahmesonde (38) so weit wie möglich in das Auspuffendrohr oder in das aufgesteckte Sammelrohr einschieben und mit der Klemmvorrichtung an das Auspuffendrohr befestigen.
- Weiter mit Taste ENTER
- Messung bei Leerlaufdrehzahl

Maximum engine running speed n[/min]:1300 Real engine running speed n[/min]: 2550 Is sampling probe in exhaust pipe ? F3=Continue F6=Pulses/720°RC Change RPM!

Liegt die Ist-Drehzahl unter dem maximal zulässigen Wert, erfolgt kein automatisches Weiterschalten zur Gaslaufzeit.

Leerlaufdrehzahl anfahren

Bei korrekter Ist-Drehzahl oder, wenn die Drehzahlbrücke aktiviert ist (siehe 5.3.15 Parametrierung der Ablaufmessung, Unterpunkt *EU ED* Parameter *drbr*.), nach Drücken der Taste **F3** beginnt die Gaslaufzeit von 30 s.

| ppm vol HC 214 | %vol CO 0.156 |
|-------------------|----------------------|
| % vol 02 21.09 | %vol CO2 13.04 |
| n[/min] 1400 | λ |
| F6= Pulses/720°RC | Gas running time: 29 |

Nach Ablauf der Gaslaufzeit erfolgt diese Anzeige:

| ppm vol HC 214 | %vol CO 0.156 |
|-------------------|------------------|
| % vol 02 21.09 | %vol CO2 13.04 |
| n[/min] 800 | λ |
| F6= Pulses/720°RC | Enter = Continue |

Weiter mit Taste ENTER

Die Messwerte der Messung bei Leerlaufdrehzahl werden abgespeichert.

| ppm vol HC 214 | %vol CO 0.156 |
|-----------------|------------------|
| % vol 02 21.09 | %vol CO2 13.04 |
| n[/min] 800 | λ |
| F3 = Quit/Print | Enter = Continue |

Wenn keine Messung bei erhöhter Leerlaufdrehzahl durchgeführt werden soll (z.B. bei Fahrzeugen ohne Kat), muss die Taste F3 innerhalb von 5 s gedrückt werden. Es erfolgt ein Protokoll-Ausdruck entsprechend der Parame-

trierung. Es erfolgt ein Freispülen des Abgasmessgerätes.

 Weiter zur Messung bei erhöhter Leerlaufdrehzahl mit Taste ENTER oder automatisch nach 5 s. Messung bei erhöhter Leerlaufdrehzahl

```
Required engine running speed
n(/min) 2500 +/- 200
Real engine running speed n[/min]: 800
Speed range 1700-3500 rpm ENTER = Change
```

- Die Solldrehzahl kann durch Drücken der Taste ENTER um jeweils 100 min⁻¹ erhöht werden (Einstellbereich 1700 -3500 min⁻¹ ± 200 min⁻¹). Wenn der höchste einstellbare Wert erreicht ist, wird zum niedrigsten Wert gesprungen.
- Wenn die Ist-Drehzahl nicht ± 200 min⁻¹ mit der Solldrehzahl übereinstimmt erfolgt kein automatisches Weiterschalten zur Gaslaufzeit.
- Drehzahl anfahren und halten

Bei korrekter Ist-Drehzahl beginnt die Gaslaufzeit von 30 s.

| ppm vol HC 214 | %vol CO 0.156 |
|-------------------|----------------------|
| % vol 02 21.09 | %vol CO2 13.04 |
| n[/min] 800 | λ |
| F6= Pulses/720°RC | Gas running time: 29 |

Nach Ablauf der Gaslaufzeit wird die Messung automatisch beendet, die Messwerte der Messung bei erhöhter Leerlaufdrehzahl werden abgespeichert und es erfolgt ein Protokoll-Ausdruck entsprechend der Parametrierung.

Es erfolgt ein Freispülen des Abgasmessgerätes.

Emission test

Flush

4.8.3 Messung bei erhöhter Leerlaufdrehzahl an 1. Stelle (nur G-Kat)

Die Messung mit erhöhter Leerlaufdrehzahl an 1. Stelle erfolgt sinngemäßgleich wie in Kapitel 4.8.2 beschrieben. Sie ist allerdings nicht geeignet für Fahrzeuge ohne Katalysator.

Im Ablauf wird automatisch von der Messung bei erhöhter Leerlaufdrehzahl zur Messung bei Leerlaufdrehzahl gewechselt.

Die Messung wird manuell beendet.

4.9 Kopie des Protokollausdruckes einer Abgasmessung

Befindet sich das Abgasmessgerät nach einer Abgasmessung im Standby-Modus, kann eine Kopie des Protokollausdruckes der letzten Abgasmessung gedruckt werden.

Wird während dieses Ablaufs für 6 s keine Taste betätigt, erfolgt automatisch der Rücksprung in den Standby-Modus.

Das Abgasmessgerät befindet sich im Standby-Modus

- - - - - - / ****
- Taste <u>></u> (7) und Taste R (6) gleichzeitig drücken.

Es werden die Werte der letzten Leerlaufmessung angezeigt:

Es werden die Werte der letzten Messung bei erhöhter Leerlaufdrehzahl angezeigt:

– Taste 🗔 (6) nochmals drücken.

Es wird eine Kopie des Protokollausdruckes der letzten Abgasmessung gedruckt.

Dieser Ausdruck ist vor dem Protokollkopf mit **Kopie** gekennzeichnet.

4.10 Protokollausdrucke

Je nach Prüfablauf werden verschiedene Protokolle ausgedruckt.

Der Inhalt der Protokollausdrucke ist von der Parametrierung abhängig.

Protokollausdruck Diagnosemessung

| >BOSCH ETT 008.55 | V5.43< | Geräte-
kennung |
|--|------------------------------|---|
| Autohaus Müller
Mühlbachstr. 33
98765 Waldheim
Tel.: 01234/567-0
Fax: 01234/567-99 | | Protokollkopf
(6 Zeilen) |
| | | |
| 27.06.96 | 14:01 | Datum / Uhrzeit |
| DE+~ | | Kraftetoffart |
| °C
1/min | 80
600 | |
| % vol CO
% vol CO2
% vol O2
ppm vol HC | 0.098
14.33
0.53
20 | Mess-Ergebnisse
entspr. Parametrierung * |

Wird während einer laufenden Messung die Taste 🖻 (8) erneut betätigt, werden die aktuellen Messwerte ohne Protokollkopf ausgedruckt.

| 27.06.96 | 14:04 |
|------------|-------|
| | |
| PEtr | |
| °C | 80 |
| 1/min | 600 |
| % vol CO | 0.098 |
| % vol CO2 | 14.33 |
| % vol 02 | 0.53 |
| ppm vol HC | 20 |

* Siehe Kapitel 5.3 Funktionen des Eingabemodus, Eingabefunktionen Nr. 2,3 und 6. Protokollausdruck Abgasmessung, 1. und 2. Messung

Protokollausdruck Abgasmessung, nur 1. Messung

| >BOSCH ETT 008.55 V5.43<
Autohaus Müller
Mühlbachstr. 33
98765 Waldheim
Tel.: 01234/567-0
Fax : 01234/567-99 | | Gerätekennung
Protokollkopf *
6 Zeilen, frei
eingebbar | >BOSCH ETT 008
 | .55 V5.43<
r
3
7-0
7-99 |
|---|---|---|--|---|
| 27.06.96 | 14:11 | Datum / Uhrzeit * | 27.06.96 | 14:11 |
| PEtr

Ergebnisse 1. M | essung | Kraftstoff | PEtr

Ergebnisse - o | hne Kat. |
| °C
1/min
% vol CO
% vol CO2
% vol O2
ppm vol HC | 80
600
0.098
14.33
0.53
20 | Messergebnisse
entsprechend
Parametrierung * | °C
1/min
% vol CO
% vol CO2
% vol O2
ppm vol HC | 80
600
0.098
14.33
0.53
20 |
| Ergebnisse 2. M
°C
1/min
% vol CO
% vol CO2
% vol O2 | 80
2480
0.098
14.33
0.53 | Messergebnisse
entsprechend
Parametrierung * | Chassis-Nr. | · · · · · · · · · · · · · · · · · · · |
| ppm VOI HC

Chassis-Nr. | 20 | Frei eingebbarer
Text (Number plate) * | <<< AU bei AUT | O REIM >>> |
| Signatur | |
 Frei eingebbarer
 Text* | | |
| <<< AU bei AUTO | REIM >>> |
 Frei eingebbarer
 Werbetext * | | |

- $\stackrel{\mathrm{O}}{\coprod}$ Wird eine Kopie des Protokollausdruckes angefordert, ist diese vor dem Protokollkopf mit Kopie gekennzeichnet.
- * Siehe Kapitel 5.3 Funktionen des Eingabemodus, Eingabefunktionen Nr. 15.

5. Funktionen der Parametereinstellung und Testfunktionen

Im Eingabemodus werden verschiedene Geräteparameter eingestellt.

Im Eingabemodus wird die Anwärmzeit nicht abgewartet. Bei Messungen in diesem Modus ist daher die Nullpunktdrift zu beachten.

Eine blinkende LED-Anzeige wird **fett** dargestellt.

| LEd | Anzeige normal |
|-----|----------------|
| LEd | Anzeige blinkt |

5.1 Einstieg in den Eingabemodus

Der Eingabemodus wird durch folgendes Vorgehen erreicht.

Netzschalter ① (5) drücken.

Im Anzeigefeld (1) erscheint

| 8.8.8.8 | 8.8.8.8 | 0 |
|---------|---------|------|
| 8.8.8.8 | 8.8.8.8 | E |
| 8.8.8.8 | 8.8.8.8 | :8 🗔 |

Solange diese Anzeige erscheint, Druckertaste 🗎 (8) gedrückt halten.

5.2 Bedienung im Eingabemodus

In den digitalen Anzeigen 10 - 14 werden Werte oder Symbole angezeigt, die betrachtet oder geändert werden können.

Die Symbole der Eingabefunktion werden in der digitalen Anzeige (15.1) angezeigt.

Der Zustand der Eingabefunktion wird in der digitalen Anzeige (15.2) dargestellt:

- 8n. Anzeige der Funktion
- ε. Eingabe
- 8b. Ablauf einer Routine

Die Nummer der Eingabefunktion erscheint in der digitalen Anzeige 18.

Bedeutung der Tasten

| Гaste 🛇 (9) | - Tastendruck verringert die Nummer der Ein- |
|-------------|--|
| | gabefunktion. |
| | - In einer Funktion Anwahl des niedrigeren |

- In einer Funktion Anwahl des niedrigeren Unterpunktes (wenn möglich).
- Verringerung des Einstellwertes.
- - Aktivierung eines Unterpunktes einer Einstellfunktion.
 - Übernahme einer Einstellung und Ausstieg aus der Funktion.
- Taste ≥ (7) Tastendruck **erhöht** die Nummer der Eingabefunktion.
 - In einer Funktion Anwahl des höheren Unterpunktes (wenn möglich).
 - Erhöhung des Einstellwertes.

Beispiel:

Anwahl einer Funktion mit

Taste Q (9) oder Taste ≥ (7)

Aktivieren einer Funktion mit

– Taste 🖹 (8)

Anwahl eines Unterpunktes in der Funktion mit

- Taste \bigcirc (9) oder Taste \ge (7)

Aktivieren des Unterpunktes mit – Taste 🖹 (8)

5.3 Funktionen des Eingabemodus

| Nummer der | | |
|-----------------|---------------|---|
| Eingabefunktion | Symbol | Funktion |
| 0 | Rj "An | Nachjustierung mit Prüfgas (AJ-
Funktion) |
| 1 | Uh "An | Eingabe von Datum und Uhrzeit |
| 2 | LR An | Lambdaberechnung Ein/Aus |
| 3 | CO An | CO _{vrai} -Berechnung Ein/Aus |
| 4 | Sr Rn | Aktualisierung des Servicedatums |
| 5 | PE Ro | Parametrier-Kontrollausdruck |
| 6 | 05 <i>A</i> n | O₂-Messung Ein/Aus |
| 7 | 2P ,8n | Anzahl der Ausdrucke |
| 8 | LP An | Anwahl des Druckers |
| 9 | SE An | Konfiguration der Analogstrom schnittstelle |
| 10 | 02 .Rn | Analysemodus, Sauerstoffmessung |
| 11 | Pu An | Pumpe im Eingabemodus Ein/Aus |
| 12 | Rn Rn | Analysemodus, Infrarotkanäle |
| 13 | 55 <i>Я</i> л | Konfiguration der Seriellen Schnitt-
stellen |
| 14 | NE An | Umschaltung zwischen altem und
neuen MOT-Protokoll |
| 15 | EU An | Parametrierung der Ablaufmessung |
| 17 | Jd Rn | Justierdaten |
| 18 | 6d An | Gerätedaten |
| 19 | EndE | Ausstieg aus Eingabemodus |

5.3.1 Kalibrierung mit zertifiziertem Prüfgas

Gemäß EU-Verordnung müssen Abgasmessgeräte in regelmäßigen Intervallen durch fachkundiges Personal mit zertifiziertem Prüfgas nachjustiert werden. Ablauf siehe Kap. 8.9.

Anwahl der AJ-Funktion mit

Taste ∅ (9) bzw. Taste ≥ (7).

---- A J.A n

Ablauf siehe Kap. 8.9.

5.3.2 Stellen der Uhr

Anwahl der Funktion "Uhr einstellen" mit

Taste Ø (9) bzw. der Taste ⇒ (7).

| 1 | Ч. | 3 | 5 | | | |
|---|----|---|---|----|-----|---|
| 1 | δ. | 1 | 0 | 9 | 2 | |
| - | - | - | - | IJ | Ь.8 | n |

Aktivieren der Einstellfunktion

– Taste 🖻 (8) drücken.

| I 4.3 S | EndE | |
|---------|---------|---|
| 16.10 | 9 2 | |
| | U h.E , | 1 |

Der Ziffernblock für die Stunde blinkt.

Blockauswahl

Verschieben des blinkenden Ziffernblockes zum nächsten Block mit

Taste ≥ (7).

Verschieben des blinkenden Ziffernblockes zum vorhergehenden Block mit

Aktivieren des angewählten Blockes.

– Taste 🖻 (8) drücken.

Aktivieren vom "Ende": Verlassen der Einstellfunktion.

Ziffernauswahl

Im angewählten Block blinkt die 1. Ziffer.

| 14.35 | EndE | |
|---------|---------|---|
| 16.10 | 5 2 | |
| 2 , 7 7 | U h.E , | 1 |

Verschieben der angewählten Ziffer zur Nächsten mit

– Taste ஊ (7).

1

Verschieben der angewählten Ziffer zur Vorhergehenden mit

- Taste 🛇 (9).

Aktivieren der eingestellten Ziffern.

Taste 🔁 (8) drücken.

| 1 | Ч.3 | 5 | ، 63 | ٤ | |
|---|------|---|-------|---|---|
| 1 | δ. Ι | 0 | 92 | | |
| 2 | , F | F | U h.E | , | 1 |

Die Ziffer kann verändert werden.

Aktivieren von EndE: Zurück zur Blockauswahl

Erhöhen der angewählten Ziffer mit

Verringern der angewählten Ziffer mit

Übernahme der eingestellten Ziffer und zurück in die Ziffernauswahl.

Taste 🔁 (8) drücken.

⁻ Taste 🛇 (9).

5.3.3 Lambdaberechnung Ein/Aus

Zur Berechnung von Lambda ist ein $\rm O_2\textsc{-}Messwertgeber$ eingebaut.

YE5: Lambdaberechnung wird durchgeführt und angezeigt, wenn Abgasmessung durchgeführt wird.

5.3.4 CO_{vrais} Berechnung Ein/Aus

Diese Einstellung ist nur möglich, wenn im Justiermodus der *EE*-Schalter auf *YE5* steht.

- *YE5*: CO_{vrais} wird berechnet und auf dem Druckerprotokoll ausgedruckt.
- no: CO_{vrais} wird nicht berechnet.

5.3.5 Aktualisierung des Wartungsdatums

Wenn die routinemäßige Wartung gemacht wird, muss dieser Schalter auf *YE5* gesetzt und aktiviert werden. Damit wird die Aufforderung zur fälligen Wartung in der Anzeige gelöscht. Das Datum der nächsten fälligen Wartung wird angezeigt.

5.3.6 Parametrier-Kontrollausdruck

Um den Ausdruck aktivieren zu können, muss externer oder interner Drucker über Eingabefunktion Nr.8 angewählt sein.

Mit Taste \bigcirc (8) bestätigen, mit Taste \Longrightarrow (7) oder Taste \bigcirc (9) Anzeige auf $orall \mathcal{E}5$ setzen und nochmal mit Taste \bigcirc (8) bestätigen.

| Pro | £85£ | |
|-------------|-------|---|
| <i>9</i> 85 | PE.E. | 5 |

Die Anzeige springt nach Beendigung des Ausdrucks zum Ausgangsmenü zurück.

5.3.7 O₂-Messwertgeber Ein/Aus

- *YE5*: Die Sauerstoffmessung ist eingeschaltet.
- no: Die Sauerstoffmessung ist ausgeschaltet.

5.3.8 Doppelter Ausdruck Ein/Aus (mit Sonderzubehör Drucker)

- *I*: Ein Tastendruck auf die Druckertaste löst einen einfachen Ausdruck aus.
- 2: Der Tastendruck auf die Druckertaste löst einen doppelten Ausdruck aus.

5.3.9 Auswahl des Druckers (Sonderzubehör)

- no: Kein Drucker eingebaut.
- 5Er: Drucker an der seriellen Schnittstelle.
- Int: Druckereingebaut.

Anschließend Konfiguration serielle Schnittstelle überprüfen (siehe Kapitel 5.3.13).

5.3.10 Einstellung des Analogstromausganges (Sonderzubehör)

- no: Keine Analogstromschnittstelle eingebaut.
- \mathcal{Q} -2 \mathcal{Q} : Ausgabebereich für jeden Messkanal 0 bis 20 mA. \mathcal{Y} -2 \mathcal{Q} : Ausgabebereich für jeden Messkanal 4 bis 20 mA

Anschließend Konfiguration serielle Schnittstelle überprüfen (siehe Kapitel 5.3.13).

5.3.11 Sauerstoffmessung

Im Anzeigefeld für HC erscheint die Sensorspannung des O₂-Messwertgebers. Im Sauerstoffanzeigefeld wird die gemessene O₂-Konzentration angezeigt. Im Anzeigefeld für CO₂ wird der gemessene Durchfluß angezeigt.

5.3.12 Pumpe im Eingabemodus Ein/Aus

Die Pumpe kann ein- (3E5) oder ausgeschaltet (no) werden.

5.3.13 Analysenmodus

In diesem Modus können Messwerte ohne eingeschaltete Pumpe betrachtet werden.

Zunächst wird ein Systemcheck mit Nullgas durchgeführt.

| Ε | 8 | L. | Ε | 8 | L. |
|---|---|----|---|---|----|
| Ε | 8 | L. | Ε | 8 | L. |

Danach werden die Messwerte der Gase angezeigt.

| 3 2 | 0 | 0 | 9 | 5 | 2 | |
|------------|---|---|---|---|---|----|
| <i>0</i> S | 2 | | 1 | З | 2 | |
| | | 8 | n | 8 | Ь | 12 |

In diesem Modus ist die Drift-Korrektur unwirksam, so dass die Nullpunkte driften können und eventuell zu Fehlern führen.

5.3.14 Konfiguration der Seriellen Schnittstelle

Die serielle Schnittstelle 5Er / und 5Er2 können wie folgt belegt werden:

|
dru
EEr
NoE2
NoE9 | Kein Gerät angeschlossen
Externer Drucker
Datenterminal
Motortester 2400 Baud
Motortester 9600 Baud | |
|--------------------------------|---|----|
| 5 E
5 E | г I ПоЕ2
г2
5 5.Е , | 13 |

Anschließend Anwahl des Druckers (siehe Kapitel 5.3.8) und Einstellung des Analogstromausgangs (siehe Kapitel 5.3.9) überprüfen.

5.3.15 Umschaltung des MOT-Protokolles

| nEU:
RLE: | Neu
Alte | ies MOT-Prot
s MOT-Proto | tokoll
koll | | | | |
|--------------|-------------|-----------------------------|----------------|------|---|----|--|
| | | | | | | | |
| n | Ε | IJ | П | £. E | , | 14 | |

Einstellungen für Bosch-Motortestsysteme (siehe Kapitel 5.3.13):

| nEU | nur mit NoE9 |
|-----|---------------------|
| RIE | nur mit <i>NoE2</i> |

5.3.16 Parametrierung der Ablaufmessung

Die Parameter der Ablaufmessung sind nur veränderbar wenn der Schalter *EE* im Justiermodus auf *YE5* steht. Die Sperre kann nur durch einen Bosch-Servicetechniker aufgehoben werden.

Anwahl der Funktion "Parametrierung der Ablaufmessung" mit

Anwahl der Unterpunkte in der Funktion mit

Taste ∅ (9) bzw. Taste ≥ (7).

Über die Unterpunkte kann die Parametrierung des Abgasmessgerätes vorgenommen werden.

Diese Unterpunkte stehen zur Verfügung:

| 0 | EU .EO | Parametrierung der Umgebung |
|---|--------|-------------------------------------|
| 1 | EU E I | Parametrierung Messwerte 1. Messung |
| 2 | EU .E2 | Parametrierung Messwerte 2. Messung |
| 3 | EU .E3 | Parametrierung der Sprache |
| 4 | EndE | Ende und Verlassen der Funktion |

E U.E O

Ω

Aktivieren der Funktion

Taste 🖹 (8) drücken.

Anwahl der Unterpunkte in der Funktion mit

Taste ∅ (9) bzw. Taste ≥ (7).

Diese Parameter können geändert werden:

| 0 | dRE | Datum und Uhrzeit (אד (שב Datum und Uhrzeit (|
|---|--------|---|
| 1 | Rdr | Protokollkopf (55/00) |
| 2 | S 16 | Signatur (925/00) |
| 3 | PL | Kennzeichen (<i>3E5/00</i>) |
| 4 | ELL | Stellung der Messung bei erhöhtem Leer- |
| | | lauf (E 1/E2) |
| 5 | Rdu. | Werbezeile |
| 6 | drbr . | Drehzahlbrücke |
| 7 | EndE | Verlassen des Parameters |
| | | |

Beispiel zur Einstellung eines Parameters:

In allen Parametern wird jeweils die aktuelle Einstellung angezeigt (hier am Beispiel **Datum und Uhrzeit**).

Aktivieren des Parameters

- Taste 🖹 (8) drücken.

| | | | ε, | |
|---|---|---|-------|---|
| У | Ε | 5 | 8 R E | 0 |

Einstellen des Parameters mit

Taste ♥ (9) bzw. Taste ≥ (7).

Übernahme der Einstellung und deaktivieren des Parameters

- Taste 🖹 (8) drücken.

- Parameter "Datum und Uhrzeit"

Es wird festgelegt, ob das aktuelle Datum und die Uhrzeit auf dem Protokoll ausgedruckt werden soll oder nicht.

| no | Datum und Uhrzeit werden nicht ausgedruckt |
|-------------|--|
| <i>9</i> 85 | Datum und Uhrzeit werden ausgedruckt |

- Parameter "Protokollkopf"

Es wird festgelegt, ob der Protokollkopf mit Werkstattadresse auf dem Protokoll ausgedruckt werden soll oder nicht.

- Der Protokollkopf muss mit dem Datenterminal oder über PC mit KD-Software (ab Ende 1997) eingegeben werden werden.
- no Der Protokollkopf wird nicht ausgedruckt
- 925 Der Protokollkopf wird ausgedruckt

- Parameter "Signatur"

Es wird festgelegt, ob das Protokoll eine Zeile mit einem Text enthält, in der der Bediener seinen Namen oder seine Unterschrift von Hand eintragen kann. Der Text Signatur wird vom Bosch-Kundendienst mit dem Datenterminal oder über PC mit KD-Software (ab Ende 1997) eingegeben.

no Wird nicht ausgedruckt

9E5 Wird ausgedruckt

- Parameter "Kennzeichen"

Es wird festgelegt, ob das Protokoll eine Zeile mit einem Text enthält, in der der Bediener die Fahrgestellnummer des geprüften Fahrzeugs von Hand eintragen kann. Der Text Fahrgestell-Nr. wird vom Bosch-Kundendienst mit dem Datenterminal oder über PC mit KD-Software (ab Ende 1997) eingegeben.

no Wird **nicht** ausgedruckt

985 Wird ausgedruckt

- Parameter "Stellung Messung mit erhöhter Leerlaufdrehzahl"

Es wird festgelegt, ob die **Messung mit erhöhter Leerlaufdrehzahl** im zeitlichen Ablauf vor (an 1. Stelle) oder nach der **Messung mit Leerlaufdrehzahl** (an 2. Stelle) erfolgt.

E I Messung mit erhöhter Leerlaufdrehzahl an 1. Stelle*E2* Messung mit erhöhter Leerlaufdrehzahl an 2. Stelle

Es wird festgelegt, ob das ausgedruckte Protokoll eine Zeile mit einem Werbetext enthält.

Der Werbetext wird vom Bosch-Kundendienst mit dem Datenterminal oder über PC mit der KD-Software (ab Ende 1997) eingegeben.

| | 00 | Werbetext | wird | nicht | ausgedruck | t. |
|--|----|-----------|------|-------|------------|----|
|--|----|-----------|------|-------|------------|----|

9E5 Werbetext wird ausgedruckt.

```
– Parameter "Drehzahlbrücke"
У Е 5 d г b г. Б
```

Es wird festgelegt, ob die Mindestdrehzahl für die Leerlaufmessung und die vorgewählte Drehzahl für die Messung bei erhöhter Leerlaufdrehzahl per Tastendruck überbrückbar sein soll.

```
no Drehzahl wird nicht überbrückt.
```

9E5 Drehzahl wird überbrückt.

Unterpunkt EU .E / "Parametrierung Messwerte 1. Messung"

Aktivieren der Funktion

| - | Taste 🖻 (8) drü | cken. | |
|---|-----------------|-------|---|
| | | | |
| | | 8 0 | |
| З | 1 E S | н С | 0 |

Anwahl der Unterpunkte in der Funktion mit

Taste Ø (9) bzw. Taste ∞ (7).

Diese Parameter können geändert werden:

| 0 | HC | Ausdruck HC-Wert (55/00) |
|---|------|-------------------------------------|
| 1 | CO | Ausdruck CO (325/no) |
| 2 | 502 | Ausdruck CO ₂ (55/00) |
| 3 | 02 | Ausdruck Oູ (້4£5/ກອ) |
| 4 | n | Ausdruck Drehzahl (۲۲۶/۱۰۰) |
| 5 | E | Ausdruck Öltemperatur (365/no) |
| 6 | L | Ausdruck Lambda (۲۲۵/۱۰۰) |
| 7 | CDFr | Ausdruck CO _{vrai} (55/no) |
| 8 | EndE | Verlassen des Parameters |
| | | |

Aktivieren des Parameters

– Taste 🔁 (8) drücken.

Einstellen des Parameters mit

- Taste ♥ (9) bzw. Taste ⇒ (7).

Übernahme der Einstellung und deaktivieren des Parameters

– Taste 🖹 (8) drücken.

- Parameter "Ausdruck HC-Wert"

Es wird festgelegt, ob der HC-Wert auf dem Protokoll ausgedruckt wird oder nicht.

| no | Wird nicht ausgedruckt |
|-------------|------------------------|
| <i>9</i> 85 | Wird ausgedruckt |

- Parameter "Ausdruck CO-Wert"

Es wird festgelegt, ob der CO-Wert auf dem Protokoll ausgedruckt wird oder nicht.

```
Wird nicht ausgedrucktWird ausgedruckt
```

Parameter "Ausdruck CO₂-Wert"

Es wird festgelegt, ob der CO₂-Wert auf dem Protokoll ausgedruckt wird oder nicht.

| no | Wird nicht ausgedruckt |
|-------------|-------------------------------|
| <i>9</i> 85 | Wird ausgedruckt |

- Parameter "Ausdruck O₂-Wert"

Es wird festgelegt, ob der O_2 -Wert auf dem Protokoll ausgedruckt wird oder nicht.

wird **nicht** ausgedruckt

925 Wird ausgedruckt

- Parameter "Ausdruck Drehzahl"

Es wird festgelegt, ob die Drehzahl auf dem Protokoll ausgedruckt wird oder nicht.

Wird nicht ausgedrucktWird ausgedruckt

- Parameter "Ausdruck Öltemperatur"

| | Ε Ι | |
|-------|-----|---|
| 9 E S | Ł | 5 |

Es wird festgelegt, ob die Öltemperatur auf dem Protokoll ausgedruckt wird oder nicht.

- no Wird nicht ausgedruckt
- 925 Wird ausgedruckt

- Parameter "Ausdruck Lambda"

| | - . | |
|-------|------------|---|
| | E 1 | |
| 9 E S | L | 5 |

Es wird festgelegt, ob der Lambda-Wert auf dem Protokoll ausgedruckt wird oder nicht.

no Wird **nicht** ausgedruckt

985 Wird ausgedruckt

- Parameter "Ausdruck CO_{vrai}-Wert"

Es wird festgelegt, ob der $\mathrm{CO}_{\mathrm{vrai}}\text{-}\mathrm{Wert}$ auf dem Protokoll ausgedruckt wird oder nicht.

wird **nicht** ausgedruckt

925 Wird ausgedruckt

5 5 <u>5</u> 3.U 3

Die Parametrierung der 2. Messung erfolgt sinngemäß gleich wie die Parametrierung der 1. Messung.

• Unterpunkt EU .E3 "Sprache / Länderauswahl"

Е И.Е.Э. 3

З

Aktivieren der Funktion

– Taste 🗎 (8) drücken.

Я л С h - d 5 P. E з

Anwahl des Unterpunktes

– Taste 🖻 (8) drücken.

Diese Einstellungen können vorgenommen werden:

| 0 | d | deutsch |
|----|---------|--|
| 1 | d .56 i | dänisch |
| 2 | 66 | englisch |
| 3 | [Н-д | Schweiz deutsch |
| 4 | [H-I | Schweiz italienisch |
| 5 | [H-F | Schweiz französisch |
| 6 | nL | niederländisch |
| 7 | PL | polnisch |
| 8 | Ρ | portugiesisch |
| 9 | Ε | spanisch |
| 10 | н | ungarisch |
| 11 | J | japanisch |
| 12 | RLL6 | EU-open (siehe Kapitel 4.8.1 Funktions |
| | | tasten am Datenterminal, |
| | | F8 Eingabe der frei definier- |
| | | baren Protokolltexte) |

Sprache / Land auswählen mit

Taste Ø (9) bzw. Taste ≥ (7).

Übernahme der Einstellung

– Taste 🖹 (8) drücken.

- Beim Wechseln der Sprache/Länderauswahl verändert sich die Grundparametrierung entsprechend.
- 5.3.17 Justierdaten anzeigen

Aktivieren der Funktion mit

– Taste 🖻 (8)

Anwahl der Unterpunkte mit

- Taste ♥ (9) bzw. Taste ஊ (7)

Über die Unterpunkte können Justierdaten abgefragt werden.

Softwareversion und Pr
üfsumme

| IJ | 1 | З | L | U 3. I O | |
|----|---|---|---|----------|---|
| Ε | ٤ | ٤ | | 8 S S | |
| Ε | Ε | 1 | Ь | 5 U.A n | 0 |

Anzeige hier z.B. Software-Version U3 . ID und Prüfsumme EE Ib.

| 2 | 5. | 0 | 9 | 1 | 9 | 9 | 5 | |
|---|----|---|---|---|----|---|---|---|
| | 3 | 8 | 5 | ٤ | 8 | Б | Ε | |
| | | | | ٦ | 8. | 8 | n | 1 |

• Erforderlichen Gase (HC, CO, CO,) für Nach-Justierung

SE5 Gas zur Nach-Justierung erforderlich Gas nicht erforderlich

Der Text wird in den Anzeigen der entsprechenden Gase dargestellt.

| n o | 5 E S | |
|-----|--------|---|
| | ЧЕS | |
| | 16.8 n | 2 |

Hier ist CO und CO₂ zur Nachjustierung erforderlich.

| 20 |
|----|
| 29 |

Die Anzeige der Faktoren aller weiteren Kraftstoffarten erfolgt sinngemäß gleich.

• Ende des Untermenüs "Justierdaten"

5.3.18 Gerätedaten

Aktivieren der Funktion mit

Anwahl der Unterpunkte mit

Taste ♥ (9) bzw. Taste ≥ (7)

Aktivieren der Unterpunkte mit

– Taste 🖹 (8)

Über die Unterpunkten können bestimmte Informationen über das Gerät abgefragt werden.

• Messwerte der Infrarotkanäle am AD-Wandler und Temperatur des Analyseteiles.

• Temperaturkorrigierte ADU-Werte und Temperatur.

Rohwerte

• Versorgungsspannung in % der Nennspannung.

• Informationen über das Einbaudatum und die Sensorspannung des O_2 -Messwertgebers am Tag des Einbaus. Aktualisierung des Datums und der Sensorspannung.

• Spannung und Anzeige des Durchflußgebers.

• Spannung und Anzeige des Luftdruckgebers.

• Ende des Untermenüs "Gerätedaten".

5.3.19 Ende des Eingabemodus

Der Eingabemodus wird verlassen. Das Gerät beginnt mit einem neuen Anlauf.

6. Sonderzubehör

6.1 Protokolldrucker

Mit dem Protokolldrucker (2) kann:

- ein Protokoll entsprechend der Parametrierung (siehe Kapitel 5.3.15)
- alle Messwerte zum Zeitpunkt des Tastendruckes

ausgedruckt werden.

Die Programmierung erfolgt bei der Inbetriebnahme durch den Kundendienst mit einem Datenterminal. Ein externer Drucker kann an der seriellen Schnittstelle (RS 232) (56) angeschlossen werden. Die Parametrierung erfolgt über den Eingabemodus (siehe Kapitel 5.3.8, 5.3.13).

6.1.1 Papierwechsel

- Rändelknopf (1) drehen und Klapptüre nach unten klappen.
- Haltebügel (2) entfernen, leere Papierrolle (3) leicht anheben und herausnehmen.
- Neue Papierrolle über Achse schieben und in Druckergehäuse einlegen. Abrollrichtung für Papier entsprechend Bild.
- Papieranfang rechtwinklig abschneiden und in das Druckwerk einführen (5).
- Vorschubtaste (4) betätigen, bis das Papier ca. 5 cm aus dem Druckwerk herausragt.
- Papier durch die Öffnung mit Abreißschiene hindurchführen.
- Haltebügel wieder einsetzen.
- Klapptür schließen und Rändelknopf eindrücken.

– Papier abreißen

6.1.2 Farbbandwechsel

- Rändelknopf drehen und Klapptür nach unten klappen.
- Durch Drücken auf die mit PUSH bezeichnete Stelle der Farbbandkassette (5) kann das Farbband entfernt werden.
 Farbbandkassette einlegen:
- Seite mit Transportrad (8) an Transportwelle ansetzen. Danach die Farbbandkassette, mit leichtem Druck, an der mit PUSH bezeichneten Stelle einrasten lassen. Das Farbband (7) muss dabei unter dem Papier (6) liegen.
- Farbband ausrichten und durch Drehen am Transportrad (in Pfeilrichtung) leicht spannen.
- Vorschubtaste (4) betätigen, bis das Papier ca. 5 cm aus dem Druckwerk herausragt.
- Papier durch die Öffnung mit Abreißschiene hindurchführen.
- Klapptür schließen und Rändelknopf eindrücken.

6.2 Drehzahlmessung

6.2.1 Anschluss der Sensoren am Abgasmessgerät

An der Rückseite des Gerätes befinden sich 2 Buchsen, an denen verschiedene Sensoren zur Drehzahlerfassung angeschlossen werden können.

 Induktive Triggerzange
 Best.Nr. 1687 224 842, 6 m (Sonderzubehör) an Anschlussbuchse (51) anschließen.

 Anschlussleitung an Kl. 1, TD/TN, EST, B- bzw. Fahrzeugmasse Best.Nr. 1684 460 178 an Anschlussbuchse (52) anschließen.

6.2.2 Durchführen der Drehzahlmessung

Alle Eingriffe und Arbeiten an der Zündanlage dürfen nur bei stehendem Motor und ausgeschalteter Zündung durchgeführt werden.

 Klemme B- der Anschlussleitung an Batterie (-) Minus oder Fahrzeugmasse anschließen.

Dieser Anschluss muss immer vorgenommen werden. Auch wenn die Messung mit der Triggerzange erfolgt. Bei Anschluss der Triggerzange kann es bei fehlerhaften Zündanlagen durch Spannungsüberschläge zu Personen- und Sachschäden kommen. Das Abgasmessgerät darf deshalb nur nach vorherigem Anschluss einer Masseleitung betrieben werden.

- Triggerzange über die Leitung der am besten zugänglichen Messstelle klemmen oder
- mit dem Bananenstecker der Anschlussleitung das Drehzahlsignal an der am besten zugänglichen Messstelle abgreifen.

6.2.3 Anwahl des Sensors und der Messstelle

Mit der Wahltaste Sei (7) muss die Herkunft des Drehzahlsignales eingestellt werden. Wenn die Taste einmal gedrückt wird, erscheint für ca. 6 sec. im Anzeigefeld für die Öltemperatur (15.1/ 15.2) das Symbol für die aktuelle Einstellung. Im Drehzahlanzeigefeld (12) wird die Drehzahl angezeigt. Jedes weitere Drücken der Taste schaltet zur nächsten möglichen Einstellung um.

Folgende Einstellungen sind möglich:

- EF5 Messung mit der Triggerzange an der Sekundärseite von Zündanlagen mit rotierender Zündverteilung (ROV und 2x ROV) und Zündanlagen mit Einzel-Funken-Spulen und Kurbel- und Nockenwellengeber (EFS mit NW)
- dF5 Messung mit der Triggerzange an der Sekundärseite (Zündleitung) von Zündanlagen mit Doppelfunkenspulen (DFS) und Zündanlagen mit Einzel-Funken-Spulen ohne Nockenwellengeber (EFS)
- *I-Pr* Messung mit der Triggerzange an der Primärseite, Kl. 1 oder 15 eines bzw. aller Zündkreise
- Pr.-L Messung mit der Anschlussleitung (KI. 1, TD/TN, EST und B-) an KI. 1, TD/TN- oder EST-Signalen

6.2.4 Einstellen der Impulszahl

Die Impulszahl muss am Abgasmessgerät mit der Taste R (6) eingestellt werden. Der Einstellmodus wird durch einmaliges Drücken aktiviert. Jedes weitere Drücken schaltet um eine Impulszahl weiter.

Bei der Drehzahlmessung werden Impulse ausgewertet, die auf 720° Kurbelwelle bezogen sind. Diese Impulse können Sekundärsignale (Zündimpulse), Primärsignale (KI.1- oder KI. 15-Impulse / Ströme bzw. Spannungen) aber auch Impulse (Spannungen), die ein der Drehzahl entsprechendes Signal (z.B. TN- oder TD-Signal) liefern, sein.

Deshalb ist es erforderlich die Impulszahl einzustellen.

Mögliche Impulszahlen sind: 1, 2, 3, 4, 5, 6, 8, 10 und 12.

Die am Fahrzeug vorliegende Impulszahl ist der Tabelle zu entnehmen und am Abgasmessgerät einzustellen:

Die Anzahl der Impulse bezogen auf 720° Kurbelwelle hängt von verschiedenen Faktoren ab:

| Motorart: | 4-Takt, 2-Takt oder Wankel |
|----------------------------------|---|
| – Zylinderzahl
– Zündungsart: | 1, 2, 3, 4, 5, 6, 8, 10, 12
Rotierende Zündverteilung mit einem Zündver-
teiler (ROV)
Rotierende Zündverteilung mit zwei Zündver-
teilern (2x ROV)
Zündanlage mit Einzel-Funken-Spule und
Kurbelwellengeber (EFS)
Zündanlage mit Einzel-Funken-Spule, Kurbel-
und Nockenwellengeber (EFS mit NW)
Zündanlage mit Doppel-Funken-Spulen (DFS) |
| Messstelle | siehe Kapitel 6.2.5 |

| Zündsystem | Motor | Triggerzange Anschlussleitung
KI.1 TD/TN, EST und B- | | | | | | |
|--|------------------------------------|---|---|---|------------------|----------------------------|----------------------------------|------------------|
| | | | Anzeige am ETT i | mλ/°C Anz | eigefeld (1 | 5.1/15.2) | | |
| | | _f | Pr- | dFS | EF | 5 | Pr | L |
| | | | Messstelle entspr | echend den | Abbildunge | en wie unten a | ufgeführt | |
| | | Pos. 3, 4 | Pos.5 | Pos.6 | Pos. 1 | Pos. 2 | Pos.3 | ohne Bild |
| | | Kl.1/Kl.15
ein Zündkreis | Kl.1/Kl.15
Summenleitung
aller Zündkreise | Leitung zur Kerze Leitung zw.
Spule und
Verteiler | | Kl. 1 eines
Zündkreises | Steuersignale
z.B:TN, TD, EST | |
| ROV
ROV | 4T
2T/Wankel | Z
2 x Z | Z
2 x Z | - | 1
2 | Z
2xZ | Z
2 x Z | Z
Z |
| 2xROV | 4T | Z/2 | Z/2 | - | 1 | Z/2 | Z/2 | Z |
| EFS
EFS
EFS mit NW
EFS mit NW | 4T
2T/Wankel
4T
2T/Wankel | 2
4
1
2 | Z
2xZ
Z
2 x Z | 2
4
-
- | -
-
1
2 | | 2
4
1
2 | Z
Z
Z
Z |
| DFS
DFS | 4T
2T/Wankel | 2
4 | Z
2 x Z | 2
4 | - | | 2
4 | Z
Z |

Z = Zylinderzahl, ROV = Rotierende Hochspannungsverteilung, EFS = Einzel-Funken-Spule, DFS = Doppel-Funken-Spule

6.2.5 Messstelle

(Pos. 1):

Sekundärseite, Zündleitung zwischen Verteiler und Zündkerze eines beliebigen Zylinders

(Pos. 2):

Sekundärseite, Zündleitung zwischen Zündspule und Verteiler (Klemme 4)

(Pos. 3 oder 4):

Primärseite, Kl. 1 - oder Kl. 15 - Strom bzw. Spannung "eines" Zündkreises

(Pos. 5):

Primärseite, Kl. 1 - oder Kl. 15 - Strom bzw. Spannung für "**alle**" Zündkreise

TN- oder TD- (Drehzahl-) Signal z.B. an der Diagnosesteckdose

 * Bei modernen Zündanlagen ist hier oft ein Zündschaltgerät zwischengeschaltet. Es wird dann zwischen Zündschaltgerät und Zündspule adaptiert.

6.3 Öltemperaturmessung

Der Temperatur-Messfühler (Sonderzubehör) wird an der Rückseite des Gerätes an Buchse (50) angeschlossen und anstelle des Ölmessstabes in den Motor eingeführt. Die Öltemperatur wird im

Anzeigefeld für Öltemperatur angezeigt. Wenn die Luftzahlmessung (siehe Kapitel 5.3.3) und die Sauerstoffmessung (siehe Kapitel 5.3.6) aktiviert sind, schaltet bei einem gemessenen CO_2 -Gehalt von über 2 % die Anzeige um auf die Luftzahl.

Die Öltemperaturanzeige wird automatisch unterdrückt, wenn ein Motortester über die Schnittstelle angeschlossen ist.

Die Lambdaanzeige bleibt bestehen.

7. Fehlermeldungen

Störungen werden durch Fehlermeldungen angezeigt. In dem Anzeigefeld für HC (10) erscheint $\mathcal{E} \ r \ r$, gefolgt von einer Schlüsselnummer.

Durch Drücken der Pumpentaste ☺ (9) wird die Fehlermeldung gelöscht. Sie erscheint jedoch erneut, wenn die Fehlerursache nicht beseitigt ist.

Wenn mehrere Fehler gleichzeitig vorliegen, erscheint nach dem Tastendruck auf die Pumpentaste © (9) die Schlüsselnummer der nächsten Fehlermeldung. Erst wenn alle Schlüsselnummern angezeigt wurden und die Fehler behoben wurden, wird der Standby-Modus wieder erreicht.

8

Beispiel: E ~

Err / Mangelnder Durchfluß

Abhilfe:

- Entnahmeschlauch und Sonde mit Pressluft ausblasen.

- Filter GF1 wechseln.
- Eingangsfilter GF2 wechseln.
- Messung neu starten.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err2 Lecktest nicht bestanden

Abhilfe:

- Abdichten und Lecktest neu starten.
- Entnahmesonde auf Undichtigkeiten überprüfen bzw. austauschen.
- Entnahmeschlauch auf Undichtigkeiten überprüfen bzw. austauschen.
- Filter austauschen, auf dichte Montage achten.
- Eingangsfilter GF2 austauschen, auf dichten Sitz achten.
- Filter GF3 und GF4 dicht montieren.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err3 HC-Rückstände im Gasentnahmesystem oder Kohlenwasserstoffgase in der Umgebungsluft (z.B. Benzindämpfe).

Abhilfe:

- Messung neu starten.
- Entnahmeschlauch abziehen, entgegen der Saugrichtung mit Pressluft ausblasen.
- Entnahmesonde mit Pressluft ausblasen.
- Filter GF1 austauschen.
- Eingangsfilter GF2 austauschen.

 Entnahmesonde in Frischluft halten und Messung neu starten.
 Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err Y Aktivkohlefilter ist mit HC-Rückständen verseucht.

Abhilfe:

- Messung neu starten.
- Aktivkohlefilter (31) austauschen.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

*Err***5** Fehler der 2. seriellen Schnittstelle oder falsche Parametrierung.

Abhilfe:

- Schnittstellenkabel prüfen.

- Eingabe im Eingabemodus durchführen.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err5 Fehler der Analogstromschnittstelle oder falsche Parametrierung.

Abhilfe:

– Eingabe im Eingabemodus durchführen.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err7 EEPROM-Fehler

Abhilfe:

- Eingabe im Eingabemodus durchführen.

Err9 Nachjustierung mit Prüfgas notwendig.

Abhilfe:

- Nachjustierung nach Kapitel 5.3.1

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err 10 Druckerart falsch parametriert.

Abhilfe:

 Druckerart einstellen (siehe Kapitel 5.3.8)
 Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err II Abgleich HC-Signal außer Toleranz.

Abhilfe:

 Pumpentaste O (9) drücken und Systemcheck auslösen.
 Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err 12 Abgleich CO-Signal außer Toleranz.

Abhilfe:

 Pumpentaste O (9) drücken und Systemcheck auslösen.
 Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err 13 Abgleich CO,-Signal außer Toleranz.

Abhilfe:

 Pumpentaste O (9) drücken und Systemcheck auslösen.
 Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err IY O₂-Messwertgeber-Abgleich fehlerhaft.

Abhilfe:

- O₂-Messwertgeber-Stecker pr
 üfen und Abgleich durchf
 ühren (siehe Kapitel 8.8.1)
- O₂-Messwertgeber austauschen.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err 15 ADU-Overflow

Abhilfe:

Messung neu starten.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err 15 O₂-Messwertgeber Mindestspannung unterschritten.

Abhilfe:

 O₂-Messwertgeber-Stecker pr
üfen und Abgleich durchf
ühren (siehe Kapitel 8.8.1)

- O₂-Messwertgeber austauschen.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err 17 Luftdruckmessung fehlerhaft.

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err 18 Strömungssensor defekt.

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err 19 Uhrdefekt.

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err20 Batterie verbraucht.

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err21 Kanalbestückung falsch.

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err22 Versorgungsspannung außer Toleranz.

Abhilfe:

– Spannungsversorgung überprüfen.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err23 Temperaturmessung des Analyseteils gestört.

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err24 EEPROM-Fehler

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err25 EEPROM-Fehler

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err26 HC-Kanal nicht justiert.

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err27 CO-Kanal nicht justiert.

Abhilfe: Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err28 CO₂-Kanal nicht justiert.

Abhilfe:

Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err29 Temperaturkompensation nicht durchgeführt.

Abhilfe: Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err 30 Abgleich für HC, CO und CO₂-Signal außer Toleranz.

Abhilfe:

 Pumpentaste O (9) drücken und Systemcheck auslösen.
 Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Fehlermeldung im Drehzahl-Anzeigefeld (12)

Trotz laufendem Motor Anzeige 3.

- Abhilfe:
- Anschlussleitung B- auf richtigen Anschluss kontrollieren.
- Anschlussleitung f
 ür TD/TN/KL1 -Signal auf richtigen Anschlusskontrollieren.
- Ist die Triggerzange an der Zündleitung des 1.Zylinders angeschlossen ?
- Schlie
 ßt die Triggerzange richtig ?
 Es darf kein Spalt zwischen den Auflagefl
 ächen des Ferritkerns sichtbar sein.

Sollten sich Metallspäne am Ferritkern der Triggerzange gesammelt haben, so können diese mit ölfreier Pressluft vorsichtig ausgeblasen werden.

Ölige Rückstände auf den Berührungsflächen des Ferritkerns können mit einem sauberen, weichen Tuch beseitigt werden. Vermeiden Sie Verschmutzungen der Triggerzange, indem Sie die Triggerzange nur über saubere Zündleitungen klemmen.

Bringt dies keine Abhilfe, Bosch-Kundendienst mit Angabe der Schlüsselnummer verständigen.

Err: Bei Anzeige Err ebenfalls Bosch-Kundendienst mit Angabe der Fehlermeldung verständigen.

8. Wartung

Routinemäßige Wartungen erhalten die Betriebsbereitschaft.

Die Messgeräte müssen in Abständen von 6 Monaten, gewartet werden. Die Wartung kann durch einen Wartungsdienst oder durch fachkundiges Personal des Messgerätebesitzers erfolgen; sie ist nachzuweisen und auf dem Messgerät kenntlich zu machen.

Die halbjährliche und jährliche Wartung ist mit einem Prüfprotokoll nachzuweisen. Mit dem Wartungsaufkleber IA4-KDF 001/21-4 Bestell-Nr. 1 689 980 194 kann sie auf dem Gerät kenntlich gemacht werden.

Wir empfehlen Ihnen für die Ablage der Nachweise das Bosch-Wartungsbuch IA4-KDF 003/3 Bestell-Nr. 1 689 980 241 sowie das Prüfprotokoll IA4-VKF 001/67 DE, Bestell-Nr. 1 689 980 286.

Gerätereparaturen (Gerät öffnen, justieren, instandsetzen usw.) können nur vom autorisierten Kundendienst durchgeführt werden.

Nachfolgende Fristen sind einzuhalten:

- Halbjährliche Wartung
- Wechsel von Filter GF1 (36) im Entnahmeschlauch.
- Wechsel von Eingangsfilter GF2 (33), siehe Kapitel 8.4.4.
- Überprüfen, ob alle drei PVC–Schläuche an den Gasausgängen angeschlossen sind (39/40/41).
- Sichtpr
 üfung der Entnahmesonde (38).
- Dichtigkeitsprüfung nach Kapitel 4.3.
- Durchgeführte Wartung quittieren, siehe Kapitel 5.3.5.
- Jährliche Wartung

Diese Wartungsarbeiten sind von einem fachkundigen Wartungsdienst durchzuführen. Sie bestehen aus der halbjährlichen Wartung und zusätzlich aus folgenden Punkten:

- Überprüfen der Messgenauigkeit des Messgerätes mit einem Prüfgas.
- Austausch des Aktivkohlefilters (31) im Nullgasweg.
- Austausch der Pumpenschutzfilter GF3 (32) und GF4 (30), siehe Kapitel 8.4.4.

Die Vorschriften der zuständigen Behörden müssen eingehalten werden.

8.1 Dichtigkeit des Entnahmesystemes

Für genaue Abgasmessungen ist ein dichtes Entnahmesystem unbedingt erforderlich. Dies ist täglich mit einer Dichtigkeitsprüfung zu überprüfen (siehe Kapitel 4.3).

8.2 Entnahmesonde (38)

Öffnung an der Sondenspitze sauberhalten. Bei HC-Rückständen und Kondenswasseranfall Entnahmesonde vom Schlauch abziehen und entgegen der Saugrichtung mit Pressluft ausblasen.

8.3 Entnahmeschlauch (35/37)

Auf Beschädigung überprüfen. Bei HC-Rückständen oder Kondenswasseranfall den Schlauch vom Messgerät abziehen und entgegen der Saugrichtung mit Pressluft ausblasen.

8.4 Filter

Bei Austausch der Filter GF1, GF2, GF3 und GF4 nur Originalfilter mit der Bestellnummer 1 687 432 005 verwenden.

Bei Einsatz von anderen Filtern (z.B. handelsübliche Kraftstoff-Filter) werden durch Korrisionsrückstände (z.B. Rostpartikel durch Metallfiltereinsätze) und ungenügende Filterwirkung die nachgeschalteten Messkammern beschädigt.

Bei Ausfällen, die durch den Einsatz falscher Filter verursacht wurden, werden alle Garantie- und Kulanzforderungen abgelehnt.

Das Messgas wird über eine Kaskade von Filtern von Partikeln und Aerosolen gereinigt.

Partikel sind feste Teile wie Staub und Ruß. Aerosole sind winzige Flüssigkeitströpfchen. Sie können sich im Gasweg und in den Analysenkammern niederschlagen und dort Beläge bilden, die zu den Fehlermeldungen \mathcal{E}_{rr} 3 und \mathcal{E}_{rr} 4 führen. Um Schäden im Abgasmessgerät zu vermeiden, ist auf die richtige Art der Filterung und des Filterwechsels zu achten.

8.4.1 Filter GF1 (36)

Dieses Filter reinigt den Gasstrom von den allergrößten Partikeln. Es ist deshalb am häufigsten zu tauschen.

Tauschintervall, je nach Häufigkeit der Benutzung des Abgasmessgerätes, etwa einmal pro Woche.

Bei starker Verschmutzung (Fehlermeldung Err 1, mangelnder Durchfluß) das Filter austauschen, ebenso bei HC-Rückständen.

8.4.2 Eingangsfilter GF2 (33)

Das zweite Filter reinigt den Gasstrom von weiteren Partikeln und Aerosolen. Je verschmutzter dieses Filter ist, desto kleiner ist die Porenweite und dadurch desto besser die Filterwirkung. Es wird durch das Wasser im Abgas sehr schnell nass. Diese Feuchtigkeit wäscht die Aerosole aus dem Gasstrom heraus und führt zu einer noch besseren Filterung von Partikeln.

Ein nasses Filter ist also erwünscht!

Tauschintervall, je nach Häufigkeit der Benutzung des Abgasmessgerätes, etwa einmal pro Monat bis einmal pro Jahr.

Bei starker Verschmutzung (Fehlermeldung *Err Ι*, mangelnder Durchfluß) sowie bei HC-Rückständen Filter austauschen.

Anschlussstücke (60) nicht aus der Geräterückwand herausziehen!

Filter (33) zusammen mit den Winkelschlauchstücken (61) von oberem und unterem Anschlussstück (60) abnehmen.

Beide Winkelschlauchstücke mit leichter Drehbewegung vom Filter abziehen und an neuem Filter anbringen.

Neues Filter mit Winkelschlauchstücken auf die Anschlussstücke aufstecken; Einbaulage entsprechend Aufdruck an der Geräterückwand.

8.4.3 Pumpenschutzfilter GF3 (32) und GF4 (30)

Die Filter GF3 (32) und GF4 (30) sind zum Schutz der Pumpen vorgesehen.

Durch falsche oder durch zu häufiges austauschen der Pumpenschutzfilter kommt es zu einer Verschmutzung der Analysenkammer im Abgasmessgerät.

Bei richtigem Gebrauch der Filter werden diese höchstens einmal im Jahr gewechselt.

Besonders für GF4 gilt ebenfalls, dass die Filterwirkung eines nassen Filters deutlich besser als bei einem trockenen Filter ist.

- 8.4.4 Wechseln der Filter GF2, GF3, GF4
- Anschlussstücke (60) nicht aus der Geräterückwand herausziehen!

Filter (30, 32, 33) zusammen mit den Winkelschlauchstücken (61) von oberem und unterem Anschlussstück (60) abnehmen. Beide Winkelschlauchstücke mit leichter Drehbewegung vom Filter abziehen und an neuem Filter anbringen.

Kleben Sie auf die neuen Filter (nur bei GF3 und GF4) das Klebeschild 1 689 980 296 auf. Die Klebeschilder müssen Sie mit dem aktuellen Datum und mit der Unterschrift des Auszuführenden versehen. Mit dem Datum kontrollieren Sie den Tauschintervall und mit der Unterschrift bestätigen Sie den sachgemäßen Tausch der Filter. Verwenden Sie einen nicht wasserlöslichen Filzstift zum Beschriften des Klebeschildes.

Klebeschild: 1 689 980 296

Neues Filter mit Winkelschlauchstücken auf die Anschlussstücke aufstecken; Einbaulage entsprechend Aufdruck an der Geräterückwand.

8.5 Überprüfung der Anzeigestabilität

Entnahmeschlauch am Messgaseingang des Abgasmessgerätes abziehen.

In der Umgebung des Abgasmessgerätes dürfen sich keine Motorenabgase, Benzin- oder Reinigungsmitteldämpfe in der Luft befinden!

Am Abgasmessgerät die Pumpe mit Taste © einschalten. Nach dem Systemabgleich (ca. 30 s) zeigt das Gerät die aktuellen Messwerte an.

Anzeige der Gas-Messkanäle ca. 2 min auf Grenzwerte und Stabilität beobachten.

Fehlergrenze für Schwankungen (Rauschen) der Anzeigen der Gas-Messkanäle:

| CO-Anzeige | 0 | %vol | ± | 0,005 | %vol |
|--------------------------|------|--------|---|-------|--------|
| CO ₂ -Anzeige | 0 | %vol | ± | 0,2 | %vol |
| O _o -Ānzeige | 20,9 | %vol | ± | 0,4 | %vol |
| HC-Anzeige | 0 | ppmvol | ± | 12 | ppmvol |

Die HC-Anzeige muss sich nach ca. 2 min auf einen Wert <12 ppm vol stabilisiert haben. Messung mit Taste © beenden.

8.6 Überprüfung der Strömungsüberwachung

Nullgaseingang (Aktivkohlefilter) an der Geräterückseite mit dem Finger abdichten.

Pumpentaste drücken.

Nach dem Systemabgleich muss die Fehlermeldung *Err I* erscheinen (Mangelnder Durchfluß).

Nullgaseingang freigeben, Messgaseingang absperren (Prüfbuchse auf Entnahmesonde).

Taste O drücken.

Nach dem Systemabgleich muss zunächst die Anzeige

| E | 8 | L. | E | 8 | L. |
|---|---|----|---|---|----|
| d | F | L | d | F | L |

und danach die Fehlermeldung *Err I* erscheinen (Mangelnder Durchfluß).

Wenn diese Fehlermeldungen so nicht darstellbar sind, ist ein Fehler in der Strömungsüberwachung vorhanden. Fehlersuche durch den Kundendienst veranlassen.

8.7 Vor dem Ausschalten

Bevor das Gerät ausgeschaltet wird, muss es mit Umgebungsluft durchspült werden; das verringert den Grad der Verschmutzung und eine vorzeitige Alterung.

Dazu:

- Sicherstellen, dass die Entnahmesonde sich in freier Luft befindet (nicht im Auspuff).
- Taste O drücken und eine Minute laufen lassen.
- Mit Druck auf die Taste O Durchspülung beenden.
- Wartungsmeldung quittieren (siehe Kapitel 5.3.5)
- Netzschalter drücken.

8.8 O₂-Messwertgeber

Der O_2 -Messwertgeber verbraucht sich im Lauf der Zeit. Der Nullpunkt der Sauerstoffmessung wird ständig überwacht. Bei Abweichungen erscheint die Fehlermeldung *Err 14* " O_2 -Messwertgeber-Abgleich fehlerhaft". Der O_2 -Messwertgeber muss ausgetauscht werden.

Nur original O₂-Messwertgeber mit der Bezeichnung Bosch A7-11.5, CLASS R-17A BOS, CLASS R-17A SIE oder W79085-G4003-X dürfen eingesetzt werden.

Der O₂-Messwertgeber enthält Lauge. Vorsicht ätzend!

Der O₂-Messwertgeber ist **Sonderabfall**.
 Er muss entsprechend den gültigen Vorschriften entsorgt werden.

8.8.1 Einbau und Abgleich des O₂-Messwertgebers

 Der O₂-Messwertgeber kann nach dem Auspacken bis zu 30 min benötigen, um die erforderliche Messgenauigkeit zu erreichen.

30 min Wartezeit zwischen Auspacken und Einbau des O₂-Messwertgebers einhalten!

- Einbau
- Abgasmessgerät vom Netz trennen.
- Abdeckkappe (53) des O₂-Messwertgebers entfernen.
- Den Klinkenstecker von dem an der Rückwand des Gerätes befindlichen O₂-Messwertgeber abnehmen und den O₂-Messwertgeber herausdrehen.
- Den neuen O₂-Messwertgeber von Hand und ohne Werkzeug einschrauben und den Klinkenstecker wieder aufstecken.
- Abdeckkappe (53) wieder anbringen.
- Abgasmessgerät am Netz anschließen.

Abgleich

- Einstieg in den Eingabemodus wie in Kapitel 5 beschrieben.
- Die Funktion "Gerätedaten" anwählen.
- Untermenü "Einbaudatum und Sensorspannung O₂-Messwertgeber" anwählen.

Im Anzeigefeld (1) erscheint

– Taste 🖹 (8) drücken

Danach werden die Justagedaten des alten O_2 -Messwertgebers automatisch angezeigt.

Sensorspannung von letztem Abgleich in Anzeige 10. Aktuelle Sensorspannung in Anzeige 13. Datum des letzten O₂-Messwertgeber-Abgleichs in Anzeigen 11,14.

```
– Taste <u>≫</u> (7) drücken
```

| 3.0 4 8 | 2.8.2 | 8 |
|---------|-------|-----|
| 15.09 | 94 | |
| 5 , c h | R 5 0 | Ь ч |

– Taste 🖻 (8) drücken

Der Abgleich wird durchgeführt. Dauer 30 s.

С Я L. С Я L. С Я L. С Я L.

Nach abgeschlossenem Abgleich erfolgt die Anzeige

Die Sensorspannung und das Einbaudatum wurde aktualisiert.

- Untermenü "Gerätedaten" beenden.

- Eingabemodus beenden.

8.9 Nachjustierung mit zertifiziertem Prüfgas

Die jährliche Wartung umfasst den Umfang der halbjährlichen Prüfung und zusätzlich die Justierung mit Prüfgas. Da bei der jährlichen Prüfung zertifiziertes Prüfgas und das Prüfgerät P140 verwendet werden muss, empfehlen wir Ihnen einen Wartungsvertrag mit Ihrem Bosch-Kundendienst abzuschließen.

Bei der jährlichen Überprüfung mit Prüfgas, ist z.B. eine Prüfgasflasche mit dem zertifizierten Gasgemisch 3,5% CO + 14% CO₂ + 2000 ppm C₃H₈ (Propan) in N₂ zu verwenden.

Das Prüfgas ist geruchlos, brennbar und giftig! Wird eine Prüfgasflasche mit einem Flaschendruck größer als 0,7 bar verwendet, so muss, um Schäden im Abgasmessgerät zu verhindern, ein Druckminderer (nach DIN 477 für Prüfgas mit einem Hinterdruck \leq 4 bar) an der Prüfgasflasche angebracht sein.

Das Prüfgas verliert seine Genauigkeit nach einer bestimmten Zeit (siehe Zertifikat des Prüfgases). Nach Ablauf des angegebenen Datums ist das Prüfgas nicht mehr für die Kalibrierung verwendbar!

Der Kundendienst parametriert das Messgerät entsprechend den Landesvorschriften. Zum Nachjustieren ist ein Prüfgasgemisch erforderlich, das folgende Konzentrationen enthält (je nach Bedarf).

- HC: 400 bis 4000 ppm vol C₃H₈ (Propan)
- CO: 1 % vol bis 10% vol CO
- CO_2 6 % vol bis 18 % vol CO_2

Das Prüfgas muss zum Prüfgaseingang/Gasausgang (41) über einen Vitonschlauch eingegeben werden, wobei eine Beströmung von > 1 I/min einzustellen ist. Die Beströmung wird angezeigt.

Der Prüfgasschlauch darf erst angeschlossen werden, wenn das Messgerät dies signalisiert.

Anwahl der AJ-Funktion gemäß Kapitel 5.1 mit

Taste ♥ (9) bzw. Taste ≥ (7).

Aktivierung der AJ-Funktion

- Taste 🖹 (8) drücken.

Auswahl der einzustellenden Gaskomponente z.B. Sollwert für HC mit

Taste ∅ (9) bzw. Taste ≥ (7).

Ziffernanwahl für den HC-Sollwert aktivieren.

Anzeige-Wert in ppm C₃H₈ Propan.

Auswahl der einzustellenden Ziffer mit

Taste ∅ (9) bzw. Taste ≥ (7).

Aktivierung der Ziffer

- Taste 🔁 (8) drücken.
- **2**000 Edit HC.J.AJ.A.60

Verändern der Ziffer mit

Taste ♥ (9) bzw. Taste ≥ (7).

Abspeichern der eingestellten Ziffer und Rücksprung in die Ziffernauswahl.

– Taste 🔁 (8) drücken.

Wenn alle Ziffern richtig eingestellt sind, Anwahl der Funktion EndE mit

0

- Taste ♥ (9) bzw. Taste ⇒ (7).
- 2000 **EndE** HC.J.RJ.RB

und verlassen der Sollwerteingabe für HC

– Taste 🔁 (8) drücken.

Auswahl des nächsten Sollwertes. Einstellung wie am Beispiel "HC" erläutert. Wenn alle Werte richtig eingestellt sind, Anwahl des Menüpunktes . $\textbf{\textit{J}}$.mit

- Taste ♥ (9) bzw. der Taste ஊ (7).

Es werden nochmal alle eingestellten Sollwerte angezeigt.

| 2 | 0 | 0 | 0 | 3.5 0 | 0 | |
|---|---|---|---|-------|---|---|
| | | | | I 4.0 | 0 | |
| | | 1 | 0 | R J.R | Ь | 0 |

Wird hier mit Taste (8) bestätigt, startet die Nachjustierung, zu der zwingend Prüfgas benötigt wird!

Taste 🔁 (8) drücken.

| R | n | 1 | | R | n | ; | | | |
|---|---|---|--|---|----|---|---|---|--|
| Б | 8 | 5 | | J | IJ | 5 | ٤ | | |
| | | | | | З. | 0 | 0 | 0 | |

Das Gerät kommt in die Anwärmzeit für die Prüfgasjustierung.

Der Prüfgasschlauch darf noch nicht angeschlossen sein.

Am Ende der Anwärmzeit erfolgt ein Systemabgleich.

| Ε | 8 | L. | Ε | 8 | L. |
|---|---|----|---|---|----|
| Ε | 8 | L. | [| 8 | Ł. |

| Б | 8 | 5. | Б | 8 | 5. |
|---|---|-----|---|---|----|
| 8 | 8 | 5. | 8 | 8 | 5. |
| | | 0.0 | | | |

Gasausgangsschlauch (41) abziehen

Pr
üfgasschlauch anschlie
ßen

Prüfgas eingeben

Anzeige der Strömung im Drehzahlanzeigefeld (12).
 Beströmung auf etwa 1 I/min einstellen.

Wenn die Beströmung ausreichend ist, Anzeige der Messwerte und der Beströmdauer 30 s.

| 1 | 0 | 6 D | 3.5 0 0 |
|---|---|-----|---------|
| 3 | 0 | | I 4.0 0 |
| | | 1.1 | |

Wenn eine oder mehrere Gaskomponenten starke Abweichungen zum eingestellten Sollwert haben, blinkt die entsprechende Gasanzeige und im Anzeigefeld für Sauerstoff erscheint *Err*. Die Justierung wird verworfen.

s **I T O O 4.0 0 O** E r r I 4.0 O I. I

Wenn die Justierung ordnungsgemäß abgelaufen ist, Rücksprung in den Eingabemodus.

- Prüfgasflasche schließen
- Prüfgasschlauch abziehen
- Gasausgangsschlauch (41) wieder anbringen

8.10 Standard-Parametrierung ETT 8.55

Diese Parameter müssen aktiviert sein:

- Parameter-Eingabemodus
- Sprache 66 (englisch)
- Datum und Uhrzeit
- Protokollkopf
- Signatur
- Kennzeichen
- Erhöhte Leerlaufmessung = E2
- Werbezeile
- Drehzahlbrücke
- 1. Messung bei Leerlaufdrehzahl mit Parametern
 - Drehzahl
 - -CO
 - -HC
 - CO₂
 - Öltemperatur
 - O₂
 - Lambda
- 2. Messung bei erhöhter Leerlaufdrehzahl mit Parametern
- wie 1. Messung, jedoch ohne Öltemperatur
- Justierparameter
- HC-Test vor jeder Messung
- Lecktest-Intervall 1 Tag
- Wartungs-Intervall 183 Tage
- Kalibrier-Intervall 365 Tage
- Kalibriergasmischung CO, HC, CO₂
- Parameter Einstellungsänderung ($\mathcal{L}\tilde{\mathcal{L}} = \mathcal{H}\mathcal{E}S$)

9. Lieferumfang

im Lieferumfang des ETT 8.55 ist enthalten:

- ETT 8.55 Grundgerät
- Entnahmesonde, 400 mm lang
- Kunststoffschlauch für Lecktest
- Gasentnahmeschlauch 8 m Viton 5x1,5
- 3 PVC-Schläuche 0,7 m
- Leitungsfilter
- Anschlussleitung für Drehzahlmessung
- Netzanschlussleitung
- 2 Sicherungen 0,63 M 250 V (Ersatz)
- O₂-Messwertgeber (eingebaut)
- Bedienungsanweisung

10. Ersatz-, Verschleißteile, Sonderzubehör

| Benennung | Bestellnummer |
|---|--|
| Entnahmesonde, 400 mm lang | 1 680 790 049 |
| Entnahmesonde für Teillastmessungen | 1 680 790 052 |
| Prüfbuchse für Lecktest
O-Ring für Prüfbuchse | 1 684 485 280
1 680 210 089 |
| Entnahmesonde, 600 mm lang | 1 680 790 016 |
| Kunststoffschlauch für Lecktest(<)
Viton 70 mm lang (<) | 1 680 706 037 |
| Gasentnahmeschlauch(<) | 1 680 706 013 |
| PVC-Schlauch-Satz(<) | 1 687 001 355 |
| Silikonschlauch für 2-Takt-Messungen(<) | 1 687 001 283 |
| Filter (z.B. GF1, 2, 3)(<) | 1 687 432 005 |
| Aktivkohlefilter(<) | 1 687 432 014 |
| O ₂ -Messwertgeber Bosch A7-11.5(<)
CLASS R-17A BOS | 1 687 224 727 |
| Öltemperatur-Fühler
– Gummikappe mit Haltefeder | 1 687 230 042
1 680 321 013 |
| Induktive Triggerzange
Prüfkabelsatz für Drehzahlmessung | 1 687 224 842
1 687 011 314 |
| Protokolldrucker
– Papierrolle(<)
– Papierrolle mit Durchschlag(<)
– Farbbandkassette(<) | 1 681 420 022
1 681 420 024
1 685 438 103 |
| Externer Protokolldrucker PDR 203
– Verbindungsleitung | 0 684 412 203
1 684 465 223 |
| Registrierpapier 2000 FPDR 203 Registrierpapier 2000 Blatt, 12"x 240(<) Farbbandkassette(<) | 1 681 420 025
1 685 438 108 |
| Verbindungsleitung ETT zu
MOT151/240/250/251 | 1 684 465 264 |
| Verbindungsleitung ETT zu FSA 560/600
und Emissions-System-Analyse | 1 684 465 233 |
| Verbindungsleitung ETT zu MOT 501 | 1 684 465 236 |
| Datenterminal
– Verbindungsleitung RS 232 (6m)
– Verbindungsleitung RS 232 (2,3m) | 1 687 022 224
1 684 465 247
1 684 465 233 |
| Abgasrückführung für MB
BDM 282
B+/BAnschlussleitung (5m)
Nachrüstsatz 2. serielle Schnittstelle | 1 680 707 102
1 687 023 298
1 684 460 253
1 687 001 356 |

(<) Verschleißteil

11. Technische Daten

| Me | ssung | Messbereich | Auflösung |
|------------------|-------------------|------------------------------------|-------------|
| СС | -Messbereich | 0,000 - 10,00 % vol CO | 0,001 % vol |
| нс | -Messbereich | 0 - 9999 ppm vol HC | 1 ppm vol |
| cc | 2-Messbereich | 0,00 - 18,00 % vol CO ₂ | 0,01 % vol |
| 0 ₂ - | Messbereich | 0,00 - 22,00 % vol O ₂ | 0,01 % vol |
| Lar | nbda Anzeige | 0,500 - 2,000 | 0,001 |
| Dre | hzahl-Messbereich | 0 - 9990 U/min | 10 U/min |
| Ölte | emperatur | 0 - 150 °C | 1°C |

| Netzversorgung | 100 V,110V, 120 V,
200 V, 230 V, 240 V
über Brücken wählbar,
50 oder 60 Hz
(Einstellung nur durch den
Bosch Kundendienst) |
|-------------------------------|--|
| Leistungsaufnahme | 60 V A |
| zulässige Umgebungstemperatur | +2 °C bis +45 °C |
| zulässige relative Feuchte | 5 % bis 90 % |
| | ohne Betauung |
| Luftdruck | 700 hPa bis 1100 hPa |
| Gebrauchslage | (-300 m bis 2500 m ü. NN)
waagerecht $\pm 5^{\circ}$ |
| Aufstellhöhe | min. 250 mm |
| (Länge der Auslaufschläuche) | min. 300 mm |
| Anwärmzeit | 3 Minuten |
| Systemabgleich | 30 s, automatisch, wenn |
| Messgasbeströmung | 41/min |
| mesegassesitemang | (min. 2 l/min. max. 6 l/min) |
| Ansprechzeit der Anzeige | < 15 s für 95 % der Mess |
| | genauigkeit |
| Gewicht | 10 kg |

Elektromagnetische Verträglichkeit (EMV):

Dieses Produkt ist ein Erzeugnis der Klasse A nach EN 55 022.

Dieses Produkt kann im Wohnbereich Funkstörungen verursachen; in diesem Fall kann vom Betreiber verlangt werden, angemessene Maßnahmen durchzuführen.

11.1 Temperaturgrenzen

| Lagertemperatur | - 20 °C bis +65 °C | | | |
|---|--|--|--|--|
| Entnahmesonde 1 680 790 049:
– Dauerbelastung Viton-Schlauch
– Spitzenbelastung | 200 °C max.
250 °C max. für < 3 min | | | |
| Teillastsonde (Sonderzubehör) 1 680 790 052: | | | | |

Dauerbelastung Viton-Schlauch 200 °C max.

- Spitzenbelastung 500 °C max. für \leq 6 min

11.2 Schalleistungspegel nach DIN 45635 (im Modus: Drucken)

Schalleistungspegel L_{wa}70,2 dBA

- Arbeitsplatzbezogener Emmissionswert L₂₄ 59,1 dBA

12. Pflege, Reinigung

Das Gehäuse und die LCD-Anzeige darf nur mit weichen Tüchern und neutralen Reinigungsmitteln gesäubert werden. Keine scheuernde Reinigungsmittel und grobe Werkstattputzlappen verwenden.

13. Gewährleistung

Es dürfen keine Veränderungen an unseren Erzeugnissen vorgenommen werden, desweiteren dürfen unsere Erzeugnisse nur mit Originalzubehör verwendet werden. Andernfalls entfallen sämtliche Gewährleistungsansprüche.

0 684 100 855

Robert Bosch GmbH Automotive Aftermarket Test Equipment Franz-Oechsle-Str. 4 D 73207 Plochingen

BOSCH

www.bosch.com e-Mail:Bosch.Prueftechnik@de.bosch.com