777780 / 03/2021 88.88.88) editing, distribution, as well Robert Bosch GmbH, Bosch Classic, AA-TR/ATR, I © Robert Bosch GmbH 2021. All rights reserved, (

Catalytic Exhaust-Gas Treatment on Gasoline Engines

Exhaust-gas system of a gasoline engine

Three-way catalytic converter

- 1 λ oxygen sensor
- 2 Swell matting
- 3 Thermally insulated double shell
- 4 Washcoat (Al,O,substrate coating) with noble-metal coating
- 5 Substrate (monolith)
- 6 Housing

Examples for oxidation reactions: 2 CO + O, -> 2 CO, 2 C₂H₆ + 7 O₂ -> 4 CO₂ + 6 H₂O

Reduction of nitrous oxides:

$2 \text{ NO} + 2 \text{ CO} \rightarrow \text{N}_2 + 2 \text{ CO}_2$ 2 NO, + 2 CO -> N, + 2 CO, + O,

λ oxygen sensor

Sectional view of a λ oxygen sensor (both two-step λ oxygen sensor and broad-band λ oxygen sensor)

- λ oxygen sensor with a planar measuring cell; planar broad-band λ oxygen sensor with a combination of a Nernst concentration cell
- 6 Protective sleeve and an oxygen pump cell)
- 3 Compensation disk
- 4 Seal pack 5 Sensor housing
 - 7 Contact holder
- 12 Seal Voltage curve of a two-step

9 PTFE grommet

10 PTFE shaped sleeve

11 Connecting leads

Measurement principle of a LSF4.2 planar two-step λ oxygen sensor.

- 2 Porous ceramic protective layer
- 3 Measuring cell with microporous noble-metal coating
- 4 Reference-air passage 5 Heater
- U_{\star} Output voltage

Measurement principle of a LSU planar broadband λ oxygen sensor

- 1 Exhaust gas
- 2 Exhaust pipe
- 3 Heater
- 4 Control electronics
- 5 Reference cell with reference-air passage
- 6 Diffusion gap
- 7 Nernst concentration cell with Nernst measuring electrode (on diffusion-gap side) and reference electrode (on reference-cell side)
- 8 Oxygen pump cell with pump electrode

Voltage curve of a broad-band

- 9 Porous protective layer
- 10 Gas-access passage
- 11 Porous diffusion barrier
- I_{P} Pump current
- U., Pump voltage
- U., Heater voltage Un Reference voltage (450 mV corresponds to $\lambda = 1$)
- $U_{\rm e}$ Sensor voltage

λ control loop

Functional diagram of λ closed-loop control

- 1 Air-mass sensor
- 2 Engine
- 3a λ sensor upstream of primary catalytic converter (two-step λ sensor, or broad-band λ sensor)
- 3b Two-step λ sensor downstream of main catalytic converter (for twosensor control)
- 4 Primary catalytic converter (three-way catalyst)
- Pollutants in the exhaust gas
- a) Before catalytic aftertreatment (untreated exhaust gas)
- b) After catalytic aftertreatment
- c) Voltage curve of two-step λ sensor

5 Main catalytic converter

(three-way catalyst)

7 Engine control unit

 U_{ν} Valve control voltage

 $V_{\rm c}$ Injected fuel quantity

6 Fuel injectors

8 Input signals

U. Sensor voltage

Manipulated-variable curve of a two-step control with a λ sensor upstream of primary catalytic converter and controlled λ shift (delay time t_{ν}) due to feedforward control and λ control with the sensor downstream of the main catalytic converter.

