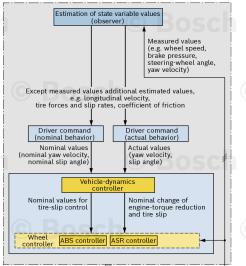
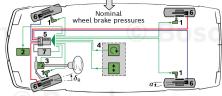

Electronic Stability Program (ESP®)

Right-left cornering sequence

Curves for dynamic response parameters

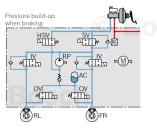
Driver steers, lateral-force buildup

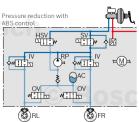

Incipient instability, ESP® intervention at left front

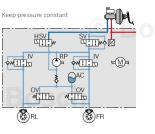

Countersteer; Vehicle without ESP®: Driver loses control of vehicle. Vehicle with ESP® remains under control.

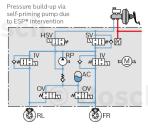
Vehicle without ESP® becomes uncontrollable. ESP® intervention at right front, complete stabilization.

- 1 Vehicle without ESP®
- 2 Vehicle with ESP®

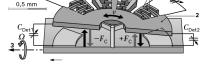

ESP® control loop in vehicle






- Wheel-speed sensors
- Brake-pressure sensor
- (integrated in the hydraulic unit) Steering-wheel-angle sensor
- Yaw-rate sensor with integrated
- lateral-acceleration sensor
- 5 ESP® hydraulic unit (hydraulic modulator)
- with mounted ECU Wheel brakes
- 7 Engine ECU

Hydraulic unit of an ESP® systems



- IV Inlet valve
- OV Outlet valve
- SV Switchover valve
- HSV High-pressure switching valve
- AC Low-pressure reservoir

 - Pump motor Return pump
 - Right

Surface micromechanics yaw-rate sensor (design)

- 1 Comb structure
- Rotary oscillator Measurement axis
- Capacitance of drive electrodes
- Capacitive rotaryoscillation tap
- $C_{\mbox{\scriptsize Drv Det}}$ Capacitance of drive tan (measurement of drive oscillation)

- F. Coriolis force
- v Oscillation velocity
- Ω Yaw rate to be measured $(\Omega = \text{const} \cdot \Delta C_{n-1})$

